AD转换技术的发展历程及其趋势15205.pdf

上传人:得****3 文档编号:83910203 上传时间:2023-03-31 格式:PDF 页数:11 大小:925.90KB
返回 下载 相关 举报
AD转换技术的发展历程及其趋势15205.pdf_第1页
第1页 / 共11页
AD转换技术的发展历程及其趋势15205.pdf_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《AD转换技术的发展历程及其趋势15205.pdf》由会员分享,可在线阅读,更多相关《AD转换技术的发展历程及其趋势15205.pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 A/D转换电路的外特性研究以及A/D转换技术的发展历程和趋势 学院:专业:学号:学生:指导教师:目录 1 引言.3 2 A/D 转换器的发展历史.3 3 A/D 转换技术的发展现状.3 3.1 全并行模拟/数字转换.4 3.2 两步型模拟/数字转换.4 3.3 插值折叠型模拟/数字转换.5 3.4 流水线型模拟/数字转换.6 3.5 逐次逼近型模拟/数字转换.7 3.6 -模拟/数字转换.8 4 A/D 转换器的比较与分类.9 5 A/D 转换技术的发展趋势.10 A/D转换电路的外特性研究以及A/D转换技术的发展历程和趋势 1 引言 随着电子产业数字化程度的不断发展,逐渐形成了以数字系统为

2、主体的格局。A/D 转换器作为模拟和数字电路的接口,正受到日益广泛的关注。随着数字技术的飞速发展,人们对A/D 转换器的要求也越来越高,新型的模拟/数字转换技术不断涌现。本文主要介绍了当前几种常用的 A/D 转换技术;并通过对数字技术发展近况的分析,探讨了 A/D 转换技术未来的发展趋势。2 A/D 转换器的发展历史 计算机、数字通讯等数字系统是处理数字信号的电路系统。然而,在实际应用中,遇到的大都是连续变化的模拟量,因此,需要一种接口电路将模拟信号转换为数字信号。A/D 转换器正是基于这种要求应运而生的。1970 年代初,由于 MOS 工艺的精度还不够高,所以模拟部分一般采用双极工艺,而数字

3、部分则采用 MOS 工艺,而且模拟部分和数字部分还不能做在同一个芯片上。因此,A/D 转换器只能采用多芯片方式实现,成本很高。1975 年,一个采用 NMOS 工艺的 10 位逐次逼近型 A/D 转换器成为最早出现的单片A/D 转换器。1976 年,出现了分辨率为 11 位的单片 CMOS 积分型 A/D 转换器。此时的单片集成 A/D 转换器中,数字部分占主体,模拟部分只起次要作用;而且,此时的 MOS 工艺相对于双极工艺还存在许多不足。1980年代,出现了采用 BiCMOS 工艺制作的单片集成 A/D 转换器,但是工艺复杂,成本高。随着 CMOS 工艺的不断发展,采用 CMOS 工艺制作单

4、片 A/D 转换器已成为主流。这种 A/D 转换器的成本低、功耗小。1990年代,便携式电子产品的普遍应用要求 A/D 转换器的功耗尽可能地低。当时的 A/D 转换器功耗为 mW 级,而现在已经可以降到 W 级。A/D 转换器的转换精度和速度也在不断提高,目前,A/D 转换器的转换速度已达到数百 MSPS,分辨率已经达到 24 位。3 A/D 转换技术的发展现状 通常,A/D 转换器具有三个基本功能:采样、量化和编码。如何实现这三个功能,决定了 A/D 转换器的电路结构和工作性能。A/D 转换器的类型很多,下面介绍几种目前常用的模拟/数字转换技术。3.1 全并行模拟/数字转换 全并行 A/D

5、转换器的结构如图1所示。它的工作原理非常简单,模拟输入信号同时与2N-1个参考电压进行比较,只需一次转换就可以同时产生 n 位数字输出。它是迄今为止速度最快的 A/D 转换器,最高采样速率可以达到500MSPS。但是,它也存在很多不足。首先,硬件开销大,其功耗和面积与分辨率呈指数关系;其次,结构重复的并行比较器之间必须要精密匹配,任何失配都会造成静态误差。而且,这种A/D 转换器还容易产生离散和不确定的输出,即所谓的“闪烁码”。所以,全并行 A/D 转换器只适用于分辨率较低的情况。图1 N 位全并行 A/D 转换器结构框图 减小全并行 A/D 转换器的输入电容和电阻网络的级数是提高其性能的关键

6、。为了达到这一目的,采用了各种新技术,如将全并行结构与插值技术相结合,可降低功耗和面积,从而可使全并行 A/D 转换器进行更高精度的模拟/数字转换。Lane C.设计了一个10位60MSPS 转换速率的全并行 A/D 转换器,通过运用插值技术,将比较器的数目从 1023个减小到512个,大大节省了功耗和面积。3.2 两步型模拟/数字转换 两步型 A/D 转换器的结构如图2所示。首先,由一个粗分全并行 A/D 转换器对输入进行高位转换,产生 N1位的高位数字输出,并将此输出通过数字/模拟转换,恢复为模拟量;然后,将原输入电压与此模拟量相减,对剩余量进行放大,再送到一个更精细的全并行模拟/数字转换

7、器进行转换,产生 N2位的低位数字输出;最后,将这两个 A/D 转换器的输出并联,作为总的数字输出。与全并行 A/D 转换器相比,此种类型的 A/D 转换器虽然转换速度降低了,但是节省了功耗和面积,解决了全并行 A/D 转换器中分辨率提高与元件数目剧增的矛盾。因此,两步型A/D 转换器可用于10位以上的模拟/数字转换,但是,它对剩余量放大器的要求很高,剩余量必须被放大到充满第二个 A/D 转换器的输入模拟量围,否则,会产生非线性和失码。另外,第一级 A/D 转换器和 D/A 转换器的建立时间及精度是限制两步型 A/D转换器工作速度的一个重要因素,如果建立时间不充分,势必导致转换结果出现误差,所

8、以,大多数两步型 A/D 转换器都采用了数字校正技术来改善这一问题。Razavi,B.和 Wooley,B.A.采用校正技术研制的两步型 A/D 转换器,其第一级比较器的建立时间只需10ns,失调电压可达到5mV,转换速度高达5MSPS,分辨率为12位。图2 两步型 A/D 转换器的结构框图 3.3 插值折叠型模拟/数字转换 折叠结构如图3所示,其基本原理就是通过一个特殊的模拟预处理(图3中的阴影部分)产生余差电压,并随后进行数字化,获得最低有效位(LSB),最高有效位(MSB)则通过与折叠电路并行工作的粗分全并行 A/D 转换器得到,几乎在对信号采样的同时,对余差进行采样。图3 折叠结构框图

9、 图3中,折叠电路的传输函数是理想情况,实际电路很难实现。所以,一般的折叠结构都具有非线性,但其过零点处的非线性为0。若只考虑这些过零点,则 Vin 与 Vrj 之差的极性可以被正确确定,再采用插值的办法产生额外的过零点来解决低位。这就是插值折叠的基本思想,它既利用了折叠特性,又不带来额外的非线性。各种新技术的运用,使插值折叠型 A/D 转换器的性能不断提高。这里介绍两种新技术:电流式插值系统和级联结构。用电阻实现的电压式插值器,其精度受到电阻匹配度的限制,而在电流式插值器中,信号是由电流幅度表示的,其精度更高,而且更适合在低电源电压下工作。Li,Y-C 等人通过在细量化通路上采用电流模式信号

10、处理技术来降低电压摆幅,获得了具有300MSPS 转换速度、60MHz 输入信号带宽、7位分辨率的 A/D 转换器。另一种改进方法就是采用级联结构。在无需增加并行输入级和细分 A/D 转换器中比较器数目的条件下,级联结构可将转换 精度提高到8位以上。Vorenkamp,P.等人设计的 12位插值折叠型 A/D 转换器采用三步式级联结构,其中,3位粗分量化,3位中分量化,6位细分量化。该A/D 转换器只需50个比较器,转换速度为60MSPS。3.4 流水线型模拟/数字转换 流水线型 A/D 转换器是对两步型 A/D 转换器的进一步扩展,其结构如图4所示。它将一个高分辨率的 n 位模拟/数字转换分

11、成多级的低分辨率的转换,然后将各级的转换结果组合起来,构成总的输出。每一级电路由采样/保持电路(S/H)、低分辨率 A/D 转换器、D/A 转换器、减法器和可提供增益的级间放大器组成。图4 流水线型 A/D 转换器结构框图 这种类型的 A/D 转换器具有以下优点:每一级的冗余位优化了重叠误差的纠正,具有良好的线性和低失调;每一级都具有各自独立的采样保持放大器,因此允许流水线各级同时对多个采样进行处理,从而提高了转换速度;分辨率相同的情况下,电路规模及功耗大大降低。但它也存在一些缺点:复杂的基准电路和偏置结构;输入信号必须穿过数级电路,造成流水延迟;同步所有输出需要严格的锁存定时;对工艺缺陷和印

12、刷线路板较敏感,这会影响增益非线性、失调及其它参数。目前,普遍采用两种新技术来提高流水线 A/D 转换器的性能。一种是时间交织技术,使多条流水线并行工作。通过采用这种技术,可大大提高转换速率,但并行的通道数不能太多,否则,会大大增加芯片面积和功耗,而且各个通路之间需要高度匹配,在工艺上很难实现。Sumanen,L.等人设计了一个具有4个并行通道的流水线 A/D 转换器,采用0.5mCMOS 工艺实现。该 A/D 转换器的采样率高达200MSPS,分辨率为10位。另一种新技术就是数字校准技术,其主要思想是将校准周期测量到的误差存放在存储器中,然后在正常运算周期,通过原始码寻址,得到校对码,再通过

13、原始码和校对码的运算,得到最终的数字输出。这种技术可对模拟电路的失调不匹配以及非线性引入的误差等进行有效的校正,从而使流水线 A/D 转换器的精度超过10位。Hakarainen,V.等人研制的交织型流水线 A/D 转换器,运用这种校正技术来校正子 D/A 转换器的误差,并对各并行通道之间增益和失调电压的失配进行补偿,从而在10位的器件匹配精度下获得了14位的转换精度。3.5 逐次逼近型模拟/数字转换 逐次逼近型 A/D 转换器的结构如图5所示,其工作原理如下:输入信号的抽样值与 D/A转换器的初始输出值相减,余差被比较器量化,量化值再来指导控制逻辑是增加还是减少D/A转换器的输出;然后,这个

14、新的 D/A 转换器输出值再次从输入抽样值中被减去,不断重复这个过程,直至其精度达到要求为止。由此可见,这种 A/D 转换器在一个时钟周期里只完成1位转换,N 位转换就需要 N 个时钟周期,故它的采样率不高,输入带宽也较低;但电路结构简单,面积和功耗小,而且不存在延迟问题。逐次逼近型 A/D 转换器的一个关键部分就是 D/A 转换器,它制约着整个 A/D 转换器的精度和速度。D/A 转换器传统的制作方法是用精密电阻网络实现,但是它的精度不高。以电容阵列为基础,采用电荷重分布技术的 D/A 转换器可以获得更高的精度,这主要是由于在 MOS电路中比较容易制造出小容量的精密电容,而且电容损耗极小。G

15、an,J-H 等人采用非二进制的电容阵列结构实现 D/A 转换器,并采用自校准技术提高电容的匹配度,使 D/A 转换器的精度高达22位,制作出功耗为50mW 的16位1.5MSPS 高性能逐次逼近型 A/D 转换器。图5 逐次逼近型 A/D 转换器结构框图 3.6 -模拟/数字转换 -A/D 转换器的结构如图6所示,它由-调制器和数字滤波器组成。调制器包括一个积分器和比较器,以及含有一个1位 D/A 转换器的反馈环,具有噪声整形功能,将量化噪声从基带搬移到基带外的更高频段,从而提高了信噪比。而且,在进行-调制时,以远高于Nyquist 采样率的频率对模拟信号进行采样,可减少基带围的噪声功率,使

16、转换精度进一步提高。经调制器输出的是1位的高速 2 数字流,包含大量高频噪声,因此需要数字滤波器,滤除高频噪声,降低抽样频率。图6 2A/D 转换器结构框图 -A/D 转换器是目前精度最高的 A/D 转换器。此外,它还具有极其优越的线性度、无需微调,以及更低的防混淆等优点。但是,过采样技术要求采样频率远高于输入信号频率,从而限制了输入信号带宽;而且,随着过采样率的提高,功耗会大大增加。因此,在保证一定精度的前提下,尽可能地降低过采样率变得十分关键。目前普遍采用的方法主要有两种:多级噪声整形技术(MASH),该技术采用多个级联的、稳定的一阶或二阶回路;另一种是多位结构的-A/D 转换器,该结构含

17、有一个 n 位并行 A/D 转换器和一个 n 位 D/A 转换器。为了获得更好的效果,通常将这两种方法结合使用。2001年,delRio,R.等人为 ADSL 应用设计的4阶-调制器采用2-1-1三级结构,其中最后一级含有4位量化器。该 A/D 转换器的过采样率仅为16,分辨率12位,采样率为4MSPS,功耗77mW。另外,还有几种新技术被应用到-A/D 转换器中,以提高其性能。带通-A/D 转换器采用带通滤波器替代积分器,量化噪声被向上和向下移出有用频带,再由带通数字滤波器将有用频带外的其他信号和量化噪声滤除,从而直接对中频信号进行高精度转换。Schreier,R.等人采用0.35m BiC

18、MOS 工艺制作的带通-A/D 转换器,其带宽为333kHz,动态围90dB,功耗为50mW,时钟频率高达32MHz。采用异质结工艺制作的连续时间-A/D 转换器,其带宽比开关电容型-A/D 转换器大得多,从而使-A/D 转换器可用于射频领域。一个采用 InPHBT 工艺实现的二阶-调制器,其分辨率为12位,信号带宽为50MHz,采样率为3.2GHz。将多个-A/D 转换器并联起来,对输入进行模拟预处理,对输出进行数字后处理,可获得与提高过采样比一样的效果,实现奈氏采样率的-A/D 转换器(过采样比为1),从而进一步提高输入信号带宽。奈氏采样率-A/D 转换器,其并行通道数为8,输入信号带宽为

19、160kHz。4 A/D 转换器的比较与分类 表1对各种 A/D 转换器的分辨率、转换速度和功耗等性能进行了比较。根据A/D 转换器的速度和精度,大致可分为三类。1)高速低(或中等)精度 A/D 转换器,具体的结构有全并行、两步型、插值折叠型和流水线型。此类 A/D 转换器速度快,但是精度不高,而且消耗的功耗大,占用的芯片面积也很大,主要用于视频处理、通信、高速数字测量仪器和雷达等领域。2)中速中等精度 A/D 转换器。这一类型的 A/D 转换器是以速度来换取精度,如逐次逼近型 A/D 转换器。这一类 A/D 转换器的数据输出通常是串行的,它们的转换速度在几十 kHz到几百 kHz 之间,精度

20、也比高速 A/D 转换器高(1016位),主要用于传感器、自动控制、音频处理等领域。3)中速或低速高精度 A/D 转换器。此类 A/D 转换器速度不快,但精度很高(1624位),如-A/D 转换器。该类型 A/D 转换器主要用于音频、通信、地球物理测量、测试仪、自动控制等领域。项目 类型 全并行 两步型 插入折叠型 流水线型 逐次逼近型 型-主要特点 超高速 高速 高速 高速 中速中精度 高精度 分辨率 6-10 位 8-12 位 8-12 位 8-16 位 8-16 位 16-24 位 转换时间 几百 ns 几百 ns 几十至几百 ns 几百 ns 几至几十us 几至几十ms 采样率 几十M

21、SPS 几 MSPS 几至几十MSPS 几 MSPS 几十至几百 MSPS 几十 MSPS 功耗 高 中 较高 中 低 中 主要用途 超高速视频处理 视频处理 雷达数据传输 视频处理,通信 数据采集,工业控制 音频处理,数字仪表 表1 各种 A/D 转换器的性能比较 5 A/D 转换技术的发展趋势 当前,数字处理系统正在飞速发展,在视频领域,高清晰度数字电视系统(HDTV)的出现,将广播电视推向了一个更高的台阶,HDTV 的分辨率与普通电视相比至少提高了一倍。在通信领域,过去无线通信系统的设计都是静态的,只能在规定围的特定频段上使用专用调制器、编码器和信道协议。而软件无线电技术(SDR)能更加

22、灵活、有效地利用频谱,并能方便地升级和跟踪新技术,大推动了无线通信系统的发展。在高精度测量领域,高级仪表的分辨率在不断提高,电流到达 A 量级,电压到达 mV 甚至更低;在音频领域,各种高性能专业音频处理设备不断涌现,如 DVD-Audio 和超级音频 CD(SACD),它们能处理更高质量的音频信号。为了满足数字系统的发展要求,A/D 转换器的性能也必须不断提高,它将主要向以下几个方向发展:高转换速度:现代数字系统的数据处理速度越来越快,要求获取数据的速度也要不断提高。比如,在软件无线电系统中,A/D 转换器的位置是非常关键的,它要求 A/D 转换器的最大输入信号频率在1GHz 和5GHz 之

23、间,以目前的技术水平,还很难实现。因此,向超高速A/D 转换器方向发展的趋势是清晰可见的。高精度:现代数字系统的分辨率在不断提高,比如,高级仪表的最小可测值在不断地减小,因此,A/D 转换器的分辨率也必须随之提高;在专业音频处理系统中,为了能获得更加逼真的声音效果,需要高精度的 A/D 转换器。目前,最高精度可达24位的 A/D 转换器也不能满足要求。现在,人们正致力于研制更高精度的 A/D 转换器。低功耗:片上系统(SOC)已经成为集成电路发展的趋势,在同一块芯片上既有模拟电路又有数字电路。为了完成复杂的系统功能,大系统中每个子模块的功耗应尽可能地低,因此,低功耗 A/D 转换器是必不可少的。在以往 的设计中,5MSPS812位分辨率 A/D 转换器的典型功耗为100150mW。这远不能满足片上系统的发展要求,所以,低功耗将是A/D 转换器一个必然的发展趋势。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁