集合知识点总结及典型例题(共13页).docx

上传人:飞****2 文档编号:8390920 上传时间:2022-03-17 格式:DOCX 页数:13 大小:274.03KB
返回 下载 相关 举报
集合知识点总结及典型例题(共13页).docx_第1页
第1页 / 共13页
集合知识点总结及典型例题(共13页).docx_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《集合知识点总结及典型例题(共13页).docx》由会员分享,可在线阅读,更多相关《集合知识点总结及典型例题(共13页).docx(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上 集 合一【课标要求】1集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二【命题走向】有关集合的高

2、考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体三【要点精讲】1集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体

3、对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示

4、法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。2集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或);集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且AB,则称A是B的真子集,记作A B;(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n1个真子集);3全集与补集:(1)包含了我们所要

5、研究的各个集合的全部元素的集合称为全集,记作U;(2)若S是一个集合,AS,则,=称S中子集A的补集;(3)简单性质:1)()=A;2)S=,=S4交集与并集:(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集。(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。5集合的简单性质:(1)(2)

6、(3)(4);(5)(AB)=(A)(B),(AB)=(A)(B)。四【典例解析】题型1:集合的概念 (2009湖南卷理)某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12_答案 :12解析 设两者都喜欢的人数为人,则只喜爱篮球的有人,只喜爱乒乓球的有人,由此可得,解得,所以,即 所求人数为12人。 例1已知全集,集合和的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有( )A. 3个 B. 2个C. 1个 D. 无穷多个答案 B 解析 由得,则,有2个,选B.例2集合,若,则的值为 ( )A.

7、0 B.1 C.2 D.4答案 D解析 ,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.题型2:集合的性质例3集合,若,则的值为 ( )A.0 B.1 C.2 D.4答案 D解析 ,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.随堂练习1.设全集U=R,A=xN1x10,B= xRx 2+ x6=0,则下图中阴影表示的集合为 ( )A2 B3 C3,2 D2,3 2. 已知集合A=y|y2-(a2+a+1)y+a(a2+1)0,B=y|y2-6y+80,若AB,则实数a的取值

8、范围为( )分析:解决数学问题的思维过程,一般总是从正面入手,即从已知条件出发,经过一系列的推理和运算,最后得到所要求的结论,但有时会遇到从正面不易入手的情况,这时可从反面去考虑从反面考虑问题在集合中的运用主要就是运用补集思想本题若直接求解,情形较复杂,也不容易得到正确结果,若我们先考虑其反面,再求其补集,就比较容易得到正确的解答解:由题知可解得A=y|ya2+1或ya, B=y|2y4,我们不妨先考虑当AB时a的范围如图由,得或.即AB时a的范围为或.而AB时a的范围显然是其补集,从而所求范围为.评注:一般地,我们在解时,若正面情形较为复杂,我们就可以先考虑其反面,再利用其补集,求得其解,这

9、就是“补集思想”例4已知全集,A=1,如果,则这样的实数是否存在?若存在,求出,若不存在,说明理由解:;,即0,解得当时,为A中元素;当时,当时,这样的实数x存在,是或。另法:,0且或。点评:该题考察了集合间的关系以及集合的性质。分类讨论的过程中“当时,”不能满足集合中元素的互异性。此题的关键是理解符号是两层含义:。变式题:已知集合,,求的值。解:由可知,(1),或(2)解(1)得,解(2)得,又因为当时,与题意不符,所以,。题型3:集合的运算例5已知函数的定义域集合是A,函数的定义域集合是B(1)求集合A、B(2)若AB=B,求实数的取值范围解 (1)AB(2)由ABB得AB,因此所以,所以

10、实数的取值范围是例6已知集合,则( ) A. B. C. D.答案 A解析 易有,选A点评:该题考察了集合的交、补运算。题型4:图解法解集合问题例7(2009年广西北海九中训练)已知集合M=,N=,则 ( ) A B C D答案 C例81.设全集,函数的定义域为A,集合,若恰好有2个元素,求a的取值集合。解:时, ,当时,在此区间上恰有2个偶数。2、,其中,由中的元素构成两个相应的集合:,其中是有序数对,集合和中的元素个数分别为和若对于任意的,总有,则称集合具有性质(I)对任何具有性质的集合,证明:;(II)判断和的大小关系,并证明你的结论解:(I)证明:首先,由中元素构成的有序数对共有个因为

11、,所以;又因为当时,时,所以当时,从而,集合中元素的个数最多为,即(II)解:,证明如下:(1)对于,根据定义,且,从而如果与是的不同元素,那么与中至少有一个不成立,从而与中也至少有一个不成立故与也是的不同元素可见,中元素的个数不多于中元素的个数,即,(2)对于,根据定义,且,从而如果与是的不同元素,那么与中至少有一个不成立,从而与中也不至少有一个不成立,故与也是的不同元素可见,中元素的个数不多于中元素的个数,即,由(1)(2)可知,例9向50名学生调查对A、B两事件的态度,有如下结果 赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的

12、学生数比对A、B都赞成的学生数的三分之一多1人。问对A、B都赞成的学生和都不赞成的学生各有多少人?解:赞成A的人数为50=30,赞成B的人数为30+3=33,如上图,记50名学生组成的集合为U,赞成事件A的学生全体为集合A;赞成事件B的学生全体为集合B。设对事件A、B都赞成的学生人数为x,则对A、B都不赞成的学生人数为+1,赞成A而不赞成B的人数为30x,赞成B而不赞成A的人数为33x。依题意(30x)+(33x)+x+(+1)=50,解得x=21。所以对A、B都赞成的同学有21人,都不赞成的有8人。点评:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握。本题主要强

13、化学生的这种能力。解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来。本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索。画出韦恩图,形象地表示出各数量关系间的联系。例10求1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有多少个?解:如图先画出Venn图,不难看出不符合条件 的数共有(2002)(2003)(2005)(20010)(2006)(20015)(20030)146所以,符合条件的数共有20014654(个)点评:分析200个数分为两类,即满足题设条件的和不满足题设条件的两大类,而不满足条件的这一类标准明确而简单,可

14、考虑用扣除法。题型7:集合综合题例11(1999上海,17)设集合A=x|xa|2,B=x|1,若AB,求实数a的取值范围。解:由|xa|2,得a2xa+2,所以A=x|a2xa+2。由1,得0,即2x3,所以B=x|2x0, 0,这时集合A中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a1=10 如果AB,那么据(2)的结论,AB中至多有一个元素(x0,y0),而x0=0,y0=0,这样的(x0,y0)A,产生矛盾,故a1=1,d=1时AB=,所以a10时,一定有AB是不正确的。点评:该题融合了集合、数列、直线方程的知识,属于知识交汇题。变式题:解答下述问题:()设集合,,求实数m的取

15、值范围.分析:关键是准确理解 的具体意义,首先要从数学意义上解释 的意义,然后才能提出解决问题的具体方法。解:的取值范围是UM=m|m-2.(解法三)设这是开口向上的抛物线,则二次函数性质知命题又等价于注意,在解法三中,f(x)的对称轴的位置起了关键作用,否则解答没有这么简单。()已知两个正整数集合A=a1,a2,a3,a4,、B.分析:命题中的集合是列举法给出的,只需要根据“交、并”的意义及元素的基本性质解决,注意“正整数”这个条件的运用,()分析:正确理解要使,由当k=0时,方程有解,不合题意;当又由由,由、得b为自然数,b=2,代入、得k=1点评:这是一组关于集合的“交、并”的常规问题,

16、解决这些问题的关键是准确理解问题条件的具体的数学内容,才能由此寻求解决的方法。题型6:课标创新题例13七名学生排成一排,甲不站在最左端和最右端的两个位置之一,乙、丙都不能站在正中间的位置,则有多少不同的排法?解:设集合A=甲站在最左端的位置,B=甲站在最右端的位置,C=乙站在正中间的位置,D=丙站在正中间的位置,则集合A、B、C、D的关系如图所示,不同的排法有种.点评:这是一道排列应用问题,如果直接分类、分步解答需要一定的基本功,容易错,若考虑运用集合思想解答,则比较容易理解。上面的例子说明了集合思想的一些应用,在今后的学习中应注意总结集合应用的经验。例14A是由定义在上且满足如下条件的函数组

17、成的集合:对任意,都有 ; 存在常数,使得对任意的,都有(1)设,证明:(2)设,如果存在,使得,那么这样的是唯一的;(3)设,任取,令证明:给定正整数k,对任意的正整数p,成立不等式H。解:对任意,所以对任意的,所以0,令=,所以反证法:设存在两个使得,。则由,得,所以,矛盾,故结论成立。,所以+。点评:函数的概念是在集合理论上发展起来的,而此题又将函数的性质融合在集合的关系当中,题目比较新颖五【思维总结】集合知识可以使我们更好地理解数学中广泛使用的集合语言,并用集合语言表达数学问题,运用集合观点去研究和解决数学问题。1学习集合的基础能力是准确描述集合中的元素,熟练运用集合的各种符号,如、=

18、、A、,等等; 2强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用Venn图解题方法的训练,加强两种集合表示方法转换和化简训练;解决集合有关问题的关键是准确理解集合所描述的具体内容(即读懂问题中的集合)以及各个集合之间的关系,常常根据“Venn图”来加深对集合的理解,一个集合能化简(或求解),一般应考虑先化简(或求解);3确定集合的“包含关系”与求集合的“交、并、补”是学习集合的中心内容,解决问题时应根据问题所涉及的具体的数学内容来寻求方法。 区别与、与、a与a、与、(1,2)与1,2; AB时,A有两种情况:A与A若集合A中有n个元素,则集合A的所有不同的子集个数为,所有真子集的个数是1, 所有非空真子集的个数是区分集合中元素的形式:如;。空集是指不含任何元素的集合。、和的区别;0与三者间的关系。空集是任何集合的子集,是任何非空集合的真子集。条件为,在讨论的时候不要遗忘了的情况。符号“”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系 ;符号“”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。逻辑是研究思维形式及其规律的一门学科,是人们认识和研究问题不可缺少的工具,是为了培养学生的推理技能,发展学生的思维能力专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁