《数学智力题大全及答案.docx》由会员分享,可在线阅读,更多相关《数学智力题大全及答案.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学智力题大全及答案 智力测验就是对智力的科学测试,它主要测验一个人的思维实力、学习实力和适应环境的实力。现代心理学界对智力有不同的看法。所谓智力就是指人类学习和适应环境的实力。智力包括视察实力、记忆实力、想象实力、思维实力等等。智力的凹凸干脆影响到一个人在社会上是否胜利。以下是学习啦网我为大家整理的可以测试智商IQ的数学智力题大全及答案: 【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。 由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入
2、空的5里面,再灌满6向5里倒3升,剩余3升。 【2】周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里出名的"小机智",她只想了一会儿就做到了。请你想想看,"小机智"是怎样做的? 设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。 【3】三个小伙子同时爱上了一个姑娘,为了确定他们
3、谁能娶这个姑娘,他们确定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最精彩的枪手是小林,他从不失误,命中率是100%。由于这个自不待言的事实,为公允起见,他们确定按这样的依次:小李先开枪,小黄其次,小林最终。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都应当实行什么样的策略? 小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。 所以黄在林没死的状况下必打林,否则自己必死。 小李经过计算比较(过程略),会确定自己先打小林。 于是经计算,小李有873/2600≈33.6%的朝气; 小黄有109/260≈41.
4、9%的朝气; 小林有24.5%的朝气。 哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁; 小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊! 最终李,黄,林存活率约38:27:35; 菜鸟活下来抱得美人归的几率大。 李先放一空枪(假如合伙干中林,自己最吃亏)黄会选林打一枪(如不打林,自己确定先玩完了)林会选黄打一枪(终归它命中率高)李黄对决0.3:0.280.4可能性李林对决0.3:0.60.6可能性胜利率0.73 李和黄打林李黄对决0.3:0.40.7*0.4可能性李林对决0.3:0.7*0.6*0.70.7*0.6可能性胜利率0.64 【4】一间囚房里关押着两个犯人。每天监
5、狱都会为这间囚房供应一罐汤,让这两个犯人自己来分。起初,这两个人常常会发生争吵,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的方法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必需找寻一个新的方法来维持他们之间的和平。该怎么办呢?按:心理问题,不是逻辑问题 是让甲分汤,分好后由乙和丙按随意依次给自己挑汤,剩余一碗留给甲。这样乙和丙两人的总和确定是他们两人可拿到的最大。然后将他们两人的汤混合之后再按两人的方法再次分汤。 【5】在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,
6、也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖。 要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必需大于直径。也就是说,对于桌面上随意一点,到最近的圆心的距离都小于2,所以,整个桌面可以用n个半径为2的硬币覆盖。 把桌面和硬币的尺度都缩小一倍,那么,长、宽各是原桌面一半的小桌面,就可以用n个半径为1的硬币覆盖。那么,把原来的桌子分割成相等的4块小桌子,那么每块小桌子都可以用n个半径为1的硬币覆盖,因此,整个桌面就可以用4n个半径为1的硬币覆盖。 【6】一个球、一把长度大约是球的直径2/3长度的直尺.你
7、怎样测出球的半径?方法许多,看看谁的比较奇妙 【7】五个大小相同的一元人民币硬币。要求两两相接触,应当怎么摆? 底下放一个1,然后2 3放在1上面,另外的4 5竖起来放在1的上面。 【8】猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告知P先生,把这张牌的花色告知Q先生。这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话:P先生:我不知道这张牌。Q先生:我知道你不知道这张牌。P先生:现在我知道这
8、张牌了。Q先生:我也知道了。听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。请问:这张牌是什么牌? 方块5 【9】一个教授逻辑学的教授,有三个学生,而且三个学生均特别聪慧!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告知他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以望见另两个数,但看不见自己的)教授问第一个学生:你能猜出自己的数吗?回答:不能,问其次个,不能,第三个,不能,再问第一个,不能,其次个,不能,第三个:我猜出来了,是144!教授很满足的笑了。请问您能猜出另外两个人的数吗? 经过第一轮,说明任何两个数都是不同的。其次轮,前两个
9、人没有猜出,说明任何一个数都不是其它数的两倍。现在有了以下几个条件:1.每个数大于02.两两不等3.随意一个数不是其他数的两倍。每个数字可能是另两个之和或之差,第三个人能猜出144,必定依据前面三个条件解除了其中的一种可能。假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满意,所以要否定x+y必定要使3不满意,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。因此是两数之和,即x+y=144。同理,这时1,2都满意,必定要使3不满意,即x-y=2y,两方程联立,可得x=108,y=36。 这两轮猜的依次其实分别为这样:第一轮(一号,二
10、号),其次轮(三号,一号,二号)。这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。 那么就假设我们是C,来看看C是怎么做出来的:C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。这样子这句话看不懂的举手): 假设自己(C)是72的话,那么B在其次回合的时候就可以看出来,下面是假如C是72,B的思路:这种状况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和)
11、: 假如假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是假如B是36,C的思路:这种状况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再说明了): 假如假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是假如C是0,A的思路:这种状况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再说明了),那他可以一口报出自己头上的36。(然后是逆推逆推逆推),现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,假如其他和B的想法一样(指B头上是36),那么C在第一回合就可以报出自己
12、的72。现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,假如其他和C的想法一样(指C头上是72),那么B在其次回合就可以报出自己的108。现在B在其次回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。 【10】某城市发生了一起汽车撞人逃跑事务,该城市只有两种颜色的车,蓝15%绿85%,事发时有一个人在现场望见了,他指证是蓝车,但是依据专家在现场分析,当时那种条件能看正确的可能性是80%那么,肇事的车是蓝车的概率究竟是多少? 15%*80%/(85%×20%+15%*80%) 【11】有一人有240公斤水,他想运往
13、干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(匀称耗水)。假设水的价格在动身地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤.),又假设他必需平安返回,请问,他最多可赚多少钱? f(x)=(60-2x)*x,当x=15时,有最大值450。 450×4 【12】现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问须要多少匹大马,中型马跟小型马?(问题的关键是刚好必需是用完100匹马) 6种结果 【13】1=5,2=15,3=2
14、15,4=2145那么5=? 因为1=5,所以5=1. 【14】有2n个人排队进电影院,票价是50美分。在这2n个人当中,其中n个人只有50美分,另外n个人有1美元(纸票子)。愚蠢的电影院起先卖票时1分钱也没有。问:有多少种排队方法使得每当一个拥有1美元买票时,电影院都有50美分找钱 注:1美元=100美分拥有1美元的人,拥有的是纸币,没法破成2个50美分 本题可用递归算法,但时间困难度为2的n次方,也可以用动态规划法,时间困难度为n的平方,实现起来相对要简洁得多,但最便利的就是干脆运用公式:排队的种数=(2n)!/n!(n+1)!。 假如不考虑电影院能否找钱,那么一共有(2n)!/n!n!种
15、排队方法(即从2n个人中取出n个人的组合数),对于每一种排队方法,假如他会导致电影院无法找钱,则称为不合格的,这种的排队方法有(2n)!/(n-1)!(n+1)!(从2n个人中取出n-1个人的组合数)种,所以合格的排队种数就是(2n)!/n!n!- (2n)!/(n-1)!(n+1)! =(2n)!/n!(n+1)!。至于为什么不合格数是(2n)!/(n-1)!(n+1)!,说起来太困难,这里就不讲了。 【15】一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少? 2元 【16】有一种体育竞赛共含M个项目,有运动员A,B,C参与,
16、在每一项目中,第一,其次,第三名分别的X,Y,Z分,其中X,Y,Z为正整数且X>Y>Z。最终A得22分,B与C均得9分,B在百米赛中取得第一。求M的值,并问在跳中学谁得其次名。 因为ABC三人得分共40分,三名得分都为正整数且不等,所以前三名得分最少为6分,40=5*8=4*10=2*20=1*20,不难得出项目数只能是5.即M=5. A得分为22分,共5项,所以每项第一名得分只能是5,故A应得4个一名一个二名.22=5*4+2,其次名得1分,又B百米得第一,所以A只能得这个其次. B的5项共9分,其中百米第一5分,其它4项全是1分,9=5+1=1+1+1.即B除百米第一外全是第三
17、,跳高其次必定是C所得. 【17】前提: 1 有五栋五种颜色的房子 2 每一位房子的主子国籍都不同 3 这五个人每人只喝一种饮料,只抽一种牌子的香烟,只养一种宠物 4 没有人有相同的宠物,抽相同牌子的香烟,喝相同的饮料 提示:1 英国人住在红房子里 2 瑞典人养了一条狗 3 丹麦人喝茶 4 绿房子在白房子左边 5 绿房子主子喝咖啡 6 抽PALLMALL烟的人养了一只鸟 7 黄房子主子抽DUNHILL烟 8 住在中间那间房子的人喝牛奶 9 挪威人住第一间房子 10抽混合烟的人住在养猫人的旁边 11养马人住在抽DUNHILL烟的人旁边 12抽BLUEMASTER烟的人喝啤酒 13德国人抽PRINCE烟 14挪威人住在蓝房子旁边 15抽混合烟的人的邻居喝矿泉水 问题是:谁养鱼?本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第12页 共12页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页