《四年级数学8种简便计算方法归类7012.pdf》由会员分享,可在线阅读,更多相关《四年级数学8种简便计算方法归类7012.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 1.提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。注意相同因数的提取。例如:0.921.410.928.59=0.92(1.41+8.59)2.借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。考试中,看到有类似 998、999 或者 1.98 等接近一个非常好计算的整数的时候,往往使用借来借去法。例如:9999+999+99+9 =9999+1+999+1+99+1+9+14 3.拆分法 顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,
2、如:2 和 5,4 和 5,2 和 2.5,4 和 2.5,8 和 1.25 等。分拆还要注意不要改变数的大小哦。例如:3.212.525 =80.412.525=812.50.425 4.加法结合律 注意对加法结合律(ab)c=a(bc)的运用,通过改变加数的位置来获得更简便的运算。例如:5.7613.674.246.33=(5.764.24)(13.676.33)5.拆分法和乘法分配律结合 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到 99、101、9.8 等接近一个整数的时候,要首先考虑拆分。例如:349.9 =34(100.1)案例再现:57101=?6.利用基准数 在一系列数种
3、找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。例如:2072+2052+2062+2042+2083=(2062x5)+10-10-20+21 7.利用公式法 (1)加法:交换律,a+b=b+a 结合律,(a+b)+c=a+(b+c)(2)减法运算性质:a-(b+c)=a-b-c,a-(b-c)=a-b+c a-b-c=a-c-b(a+b)-c=a-c+b=b-c+a(3):乘法(与加法类似):交换律,a*b=b*a 结合律,(a*b)*c=a*(b*c)分配率,(a+b)xc=ac+bc(a-b)*c=ac-bc(4)除法运算性质(与减法类似)
4、:a(b*c)=abc a(bc)=abxc abc=acb(a+b)c=ac+bc(a-b)c=ac-bc 前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。8.裂项法 分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是 1 的,复杂形式可为都是 x(x 为任意自然数)的,但是只要将 x 提取出来即可转化为分子都是 1 的运算。(2)分母上均为几个自然数的乘积形式,并且满足相邻 2 个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。公式: