《大学物理答案(第三版)汇总30262.pdf》由会员分享,可在线阅读,更多相关《大学物理答案(第三版)汇总30262.pdf(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专业.专注.学习参考 .习题七 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同?答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化 力学平衡态与热力学平衡态不同当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡而个别粒子所受合外力可以不为零而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零 气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何?答:气体动理论的研究对象是大量微观粒子组成的系统是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运
2、动的宏观结果,再由实验确认的方法 从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高理想气体的微观模型是把分子看成弹性的自由运动的质点 何谓微观量?何谓宏观量?它们之间有什么联系?答:用来描述个别微观粒子特征的物理量称为微观量如微观粒子(原子、分子等)的大小、质量、速度、能量等描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量 气体宏观量是微观量统计平均的结果 7.6 计算下列一组粒子平均速率和方均根速率?iN 21 4 6 8 2)sm(1iV 10.0 20.0 3
3、0.0 40.0 50.0 解:平均速率 2864215024083062041021iiiNVNV 7.2141890 1sm 方均根速率 28642150240810620410212232222iiiNVNV 专业.专注.学习参考 .6.25 1sm 7.7 速率分布函数)(vf的物理意义是什么?试说明下列各量的物理意义(n为分子数密度,N为系统总分子数)(1)vvfd)((2)vvnfd)((3)vvNfd)((4)vvvf0d)((5)0d)(vvf (6)21d)(vvvvNf 解:)(vf:表示一定质量的气体,在温度为T的平衡态时,分布在速率v附近单位速率区间内的分子数占总分子数
4、的百分比.(1)vvfd)(:表示分布在速率v附近,速率区间vd内的分子数占总分子数的百分比.(2)vvnfd)(:表示分布在速率v附近、速率区间dv内的分子数密度(3)vvNfd)(:表示分布在速率v附近、速率区间dv内的分子数 (4)vvvf0d)(:表示分布在21 vv区间内的分子数占总分子数的百分比(5)0d)(vvf:表示分布在0的速率区间内所有分子,其与总分子数的比值是1.(6)21d)(vvvvNf:表示分布在21 vv区间内的分子数.7.8 最概然速率的物理意义是什么?方均根速率、最概然速率和平均速率,它们各有何用处?答:气体分子速率分布曲线有个极大值,与这个极大值对应的速率叫
5、做气体分子的最概然速率物理意义是:对所有的相等速率区间而言,在含有Pv的那个速率区间内的分子数占总分子数的百分比最大 分布函数的特征用最概然速率Pv表示;讨论分子的平均平动动能用方均根速率,讨论平均自由程用平均速率 7.9 容器中盛有温度为T的理想气体,试问该气体分子的平均速度是多少?为什么?答:该气体分子的平均速度为0.在平衡态,由于分子不停地与其他分子及容器壁发生碰撞、其速度也不断地发生变化,分子具有各种可能的速度,而每个分子向各个方向运动的概率是相等的,沿各个方向运动的分子数也相同从统计看气体分子的平均速度是0.7.10 在同一温度下,不同气体分子的平均平动动能相等,就氢分子和氧分子比较
6、,氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子大,对吗?答:不对,平均平动动能相等是统计平均的结果分子速率由于不停地发生碰撞而发生变化,分子具有各种可能的速率,因此,一些氢分子的速率比氧分子速率大,也有一些氢分子的速率比氧分子速率小 7.11 如果盛有气体的容器相对某坐标系运动,容器内的分子速度相对这坐标系也增大了,温度也因此而升高吗?答:宏观量温度是一个统计概念,是大量分子无规则热运动的集体表现,是分子平均平动动能的量度,分子热运动是相对质心参照系的,平动动能是系统的内动能温度与系统的整体运动无关只有当系统的整体运动的动能转变成无规则热运动时,系统温度才会变化 7.12 题 7.12
7、 图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢?专业.专注.学习参考 .题 6-10 图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高?答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高 题 7.12 图 7.13 温度概念的适用条件是什么?温度微观本质是什么?答:温度是大量分子无规则热运动的集体表现,是一个统计概念,对个别分子无意义温度微观本质是分子平均平动动能的量度 7.14 下列系统各有多少个自由度:(1)在一平面上滑动的粒子;(2)可以在一平面上滑动并可围绕垂直于平面的轴转动的硬币;(3)一弯成三角形的金属棒在空间自由运动
8、 解:(1)2,(2)3,(3)6 7.15 试说明下列各量的物理意义(1)kT21 (2)kT23 (3)kTi2(4)RTiMMmol2 (5)RTi2 (6)RT23 解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k21T(2)在平衡态下,分子平均平动动能均为kT23.(3)在平衡态下,自由度为i的分子平均总能量均为kTi2.(4)由质量为M,摩尔质量为molM,自由度为i的分子组成的系统的内能为RTiMM2mol.(5)1摩尔自由度为i的分子组成的系统内能为RTi2.(6)1摩尔自由度为3的分子组成的系统的内能RT23,或者说热力学体系内,1 摩尔分子的平
9、均平动动能之总和为RT23.7.16 有两种不同的理想气体,同压、同温而体积不等,试问下述各量是否相同?(1)分子数密度;(2)气体质量密度;(3)单位体积内气体分子总平动动能;(4)单位体积内气体分子的总动能 专业.专注.学习参考 .解:(1)由kTpnnkTp,知分子数密度相同;(2)由RTpMVMmol知气体质量密度不同;(3)由kTn23知单位体积内气体分子总平动动能相同;(4)由kTin2知单位体积内气体分子的总动能不一定相同 7.17 何谓理想气体的内能?为什么理想气体的内能是温度的单值函数?解:在不涉及化学反应,核反应,电磁变化的情况下,内能是指分子的热运动能量和分子间相互作用势
10、能之总和对于理想气体不考虑分子间相互作用能量,质量为M的理想气体的所有分子的热运动能量称为理想气体的内能 由于理想气体不计分子间相互作用力,内能仅为热运动能量之总和即 RTiMME2mol是温度的单值函数 7.18 如果氢和氦的摩尔数和温度相同,则下列各量是否相等,为什么?(1)分子的平均平动动能;(2)分子的平动动能;(3)内能 解:(1)相等,分子的平均平动动能都为kT23(2)不相等,因为氢分子的平均动能kT25,氦分子的平均动能kT23(3)不相等,因为氢分子的内能RT25,氦分子的内能RT23 7.19 有一水银气压计,当水银柱为 0.76m 高时,管顶离水银柱液面 0.12m,管的
11、截面积为 2.010-4m2,当有少量氦(He)混入水银管内顶部,水银柱高下降为 0.6m,此时温度为 27,试计算有多少质量氦气在管顶(He 的摩尔质量为 0.004kgmol-1)?解:由理想气体状态方程RTMMpVmol 得 RTpVMMmol 汞的重度 51033.1Hgd3mN 氦气的压强 Hg)60.076.0(dP 氦气的体积 4100.2)60.088.0(V3m )27273()100.228.0()60.076.0(004.04HgRdM )27273(31.8)100.228.0()60.076.0(004.04Hgd 61091.1Kg 7.20 设有N个粒子的系统,其
12、速率分布如题 7.20 图所示求(1)分布函数)(vf的表达式;专业.专注.学习参考 .(2)a与0v之间的关系;(3)速度在 1.50v到 2.00v之间的粒子数(4)粒子的平均速率(5)0.50v到 10v区间内粒子平均速率 题 7.20 图 解:(1)从图上可得分布函数表达式)2(0)()2()()0(/)(00000vvvNfvvvavNfvvvavvNf)2(0)2(/)0(/)(00000vvvvvNavvNvavvf)(vf满足归一化条件,但这里纵坐标是)(vNf而不是)(vf故曲线下的总面积为N,(2)由归一化条件可得 000002032ddvvvvNaNvaNvvavN(3)
13、可通过面积计算NvvaN31)5.12(00(4)N个粒子平均速率 000200200ddd)(1d)(vvvvavvvavvvvNfNvvvfv 02020911)2331(1vavavNv(5)05.0 v到01v区间内粒子平均速率 00005.0115.0ddvvvvNNvNNNNvv 00005.05.00211dd)(vvvvvNvavNNvvvfNN 2471)243(1d120103003015.002100avNvavvavNvvavNvvv 05.0 v到01v区间内粒子数 NavvvaaN4183)5.0)(5.0(210001 专业.专注.学习参考 .9767020vNa
14、vv 7.21 试计算理想气体分子热运动速率的大小介于1100ppvv与1100ppvv之间的分子数占总分子数的百分比 解:令Pvvu,则麦克斯韦速率分布函数可表示为 dueuNdNu224 因为1u,02.0u 由 ueuNNu224 得%66.102.0141eNN 7.22 容器中储有氧气,其压强为 p0.1 MPa(即 1atm)温度为 27,求(1)单位体积中的分子n;(2)氧分子的质量m;(3)气体密度;(4)分子间的平均距离e;(5)平均速率v;(6)方均根速率2v;(7)分子的平均动能 解:(1)由气体状态方程nkTp 得 242351045.23001038.110013.1
15、1.0kTpn3m(2)氧分子的质量 26230mol1032.51002.6032.0NMm kg(3)由气体状态方程RTMMpVmol 得 13.030031.810013.11.0032.05molRTpM 3mkg(4)分子间的平均距离可近似计算 932431042.71045.211ne m(5)平均速率 58.446032.030031.860.160.1molMRTv 1sm (6)方均根速率 87.48273.1mol2MRTv1sm(7)分子的平均动能 20231004.13001038.12525kTJ 7.23 1mol 氢气,在温度为 27时,它的平动动能、转动动能和内
16、能各是多少?专业.专注.学习参考 .解:理想气体分子的能量 RTiE2 平动动能 3t 5.373930031.823tEJ 转动动能 2r 249330031.822rEJ 内能5i 5.623230031.825iE J 7.24 一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的 2 倍,求(1)氧气和氢气分子数密度之比;(2)氧分子和氢分子的平均速率之比 解:(1)因为 nkTp 则 1HOnn(2)由平均速率公式 mol60.1MRTv 41molmolOHHOMMvv 7.25 一真空管的真空度约为 1.3810-3 Pa(即 1.010-5 mmHg),试 求在 27时单位体积中的
17、分子数及分子的平均自由程(设分子的有效直径d310-10 m)解:由气体状态方程nkTp 得 172331033.33001038.11038.1kTpn 3m 由平均自由程公式 nd221 5.71033.3109211720 m 7.26 (1)求氮气在标准状态下的平均碰撞频率;(2)若温度不变,气压降到 1.3310-4Pa,平均碰撞频率又为多少(设分子有效直径 10-10 m)?解:(1)碰撞频率公式vndz22 对于理想气体有nkTp,即 kTpn 所以有 kTpvdz22 而 mol60.1MRTv 43.4552827331.860.1v 1sm 氮气在标准状态下的平均碰撞频率
18、专业.专注.学习参考 .805201044.52731038.110013.143.455102z1s 气压下降后的平均碰撞频率 123420s714.02731038.11033.143.455102z 7.27 1mol 氧气从初态出发,经过等容升压过程,压强增大为原来的 2 倍,然后又经过等温膨胀过程,体积增大为原来的 2 倍,求末态与初态之间(1)气体分子方均根速率之比;(2)分子平均自由程之比 解:由气体状态方程 2211TpTp 及 3322VpVp 方均根速率公式 mol273.1MRTv 21212122ppTTvv末初 对于理想气体,nkTp,即 kTpn 所以有 pdkT2
19、2 12121TppT末初 7.28 飞机起飞前机舱中的压力计指示为1.0 atm(1.013105 Pa),温度为27;起飞后压力计指示为 0.8 atm(0.8104105 Pa),温度仍为 27,试计算飞机距地面的高度 解:气体压强随高度变化的规律:由nkTp 及kTmgzenn0 RTgzMkTmgzkTmgzepepkTenpmol000 ppgMRTz0molln 31096.18.01ln8.90289.030031.8z m 7.29 上升到什么高度处大气压强减少为地面的 75%(设空气的温度为 0)解:压强随高度变化的规律 ppgMRTz0molln 3103.275.01l
20、n8.90289.027331.8zm(7.30 7.31 7.32 没有)习题八 专业.专注.学习参考 .8.3 下列表述是否正确?为什么?并将错误更正(1)AEQ (2)VpEQd(3)121QQ (4)121QQ不可逆 解:(1)不正确,AEQ(2)不正确,VpEQd(3)不正确,121QQ(4)不正确,121QQ不可逆 8.4 Vp 图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高?答:封闭曲线所包围的面积表示循环过程中所做的净功由于1QA净,净A面积越大,效率不一定高,因为还与吸热1Q有关 8.5 如题 8.5 图所示,有三个循环过程,指出每一循环过程所作的功是正的、负
21、的,还是零,说明理由 解:各图中所表示的循环过程作功都为0因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0 题 8.5 图 8.6 用热力学第一定律和第二定律分别证明,在Vp 图上一绝热线与一等温线不能有两个交点 题 8.6 图 解:1.由热力学第一定律有 AEQ 若有两个交点a和b,则 专业.专注.学习参考 .经等温ba 过程有 0111AQE 经绝热ba 过程 012AE 022AE 从上得出21EE,这与a,b两点的内能变化应该相同矛盾 2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对
22、外做正功,热机效率为%100,违背了热力学第二定律 8.7 一循环过程如题 8.7 图所示,试指出:(1)cabcab,各是什么过程;(2)画出对应的Vp 图;(3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量acbcabQQQ,表述其热机效率或致冷系数 解:(1)ab是等体过程 bc过程:从图知有KTV,K为斜率 由vRTpV 得 KvRp 故bc过程为等压过程 ca是等温过程(2)Vp 图如题8.7图 题8.7图 (3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是Vp 图中的图形(5)abcabcabQQQQe 专业.专注.学
23、习参考 .题 8.7 图 题 8.8 图 8.8 两个卡诺循环如题 7-6 图所示,它们的循环面积相等,试问:(1)它们吸热和放热的差值是否相同;(2)对外作的净功是否相等;(3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等但吸热和放热的多少不一定相等,效率也就不相同 8.9 评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程 答:(1)不正确有外界的帮助热能够完全变成功;功可以完全
24、变成热,但热不能自动地完全变成功;(2)不正确热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体但在外界的帮助下,热量能从低温物体传到高温物体(3)不正确一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是 可逆过程用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程有些过程 虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程 8.10 根据BAABTQSS可逆d及BAABTQSS不可逆d,这是否说明可逆过程的熵变大于不可逆过程熵变?为什么?说明
25、理由 答:这不能说明可逆过程的熵变大于不可逆过程熵变,熵是状态函数,熵变只与初末状态有关,如果可逆过程和不可逆过程初末状态相同,具有相同的熵变只能说在不可逆过程中,系统的热温比之和小于熵变 8.11 如题 8.11 图所示,一系统由状态a沿acb到达状态 b 的过程中,有 350 J 热量传入系统,而系统作功 126 J(1)若沿adb时,系统作功 42 J,问有多少热量传入系统?(2)若系统由状态b沿曲线ba返回状态a时,外界对系统作功为 84 J,试问系统是吸热还是专业.专注.学习参考 .放热?热量传递是多少?题 8.11 图 解:由abc过程可求出b态和a态的内能之差 AEQ 22412
26、6350AQE J abd过程,系统作功42AJ 26642224AEQJ 系统吸收热量 ba过程,外界对系统作功84AJ 30884224AEQJ 系统放热 8.12 1 mol 单原子理想气体从 300 K 加热到 350 K,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功?(1)体积保持不变;(2)压力保持不变 解:(1)等体过程 由热力学第一定律得EQ 吸热 )(2)(1212VTTRiTTCEQ 25.623)300350(31.823EQ J 对外作功 0A(2)等压过程)(22)(1212PTTRiTTCQ 吸热 75.1038)300350(31.825Q J
27、)(12VTTCE 内能增加 25.623)300350(31.823E J 对外作功 5.4155.62375.1038EQAJ 8.13 一个绝热容器中盛有摩尔质量为molM,比热容比为的理想气体,整个容器以速度v运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为内能)专业.专注.学习参考 .解:整个气体有序运动的能量为221mu,转变为气体分子无序运动使得内能增加,温度变化 2V21muTCMmE )1(211212molV2moluMRCuMT 8.14 0.01 m3氮气在温度为 300 K 时,由 0.1 MPa(即 1 atm)压缩到 10 MPa试分别求
28、氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功 解:(1)等温压缩 300TK 由2211VpVp 求得体积 3211210101.0101pVpV 3m 对外作功 21112lnlnppVpVVVRTA 01.0ln01.010013.115 31067.4J(2)绝热压缩RC25V 57 由绝热方程 2211VpVp /12112)(pVpV 1121/12112)()(VpppVpV 3411093.101.0)101(m 由绝热方程22111pTpT 得 K579)10(30024.04.1111212TppTT 热力学第一定律AEQ,0Q 所以 )(12mo
29、lTTCMMAV RTMMpVmol,)(2512111TTRRTVpA 35105.23)300579(25300001.010013.1A J 8.15 理想气体由初状态),(11Vp经绝热膨胀至末状态),(22Vp试证过程中气体所作的功专业.专注.学习参考 .为 12211VpVpA,式中为气体的比热容比.答:证明:由绝热方程 CVpVppV2211 得VVpp111 21dVVVpA 21)11(1d11121111VVrVVVpvvVpA 1)(112111VVVp 又 )(1111211VVVpA 112221111VVpVVp 所以 12211VpVpA 8.16 1 mol 的
30、理想气体的 T-V 图如题 7-15 图所示,ab为直线,延长线通过原点 O求ab过程气体对外做的功 题 8.16 图 解:设KVT 由图可求得直线的斜率K为 002VTK 得过程方程 VVTK002 由状态方程 RTpV 得 VRTp ab过程气体对外作功 002dVvVpA 专业.专注.学习参考 .000000200022002d2d2dVVVvVVRTVVRTVVVTVRVVRTA 8.17 某理想气体的过程方程为aaVp,2/1为常数,气体从1V膨胀到2V求其所做的功 解:气体作功 21dVvVpA 2121)11()(d2121222VVVVVVaVaVVaA 8.18 设有一以理想
31、气体为工质的热机循环,如题 7-17 图所示试证其循环效率为 1112121ppVV 答:等体过程 吸热 )(12V1TTCQ)(1221V11RVpRVpCQQ 绝热过程 03Q 等压压缩过程 放热 )(12p2TTCQ)(12P22TTCQQ )(2212PRVpRVpC 循环效率 121QQ)1/()1/(1)()(1121212221V2212p12ppVpVpCVpVpCQQ 专业.专注.学习参考 .题 8.18 图 题 8.20 图 8.19 一卡诺热机在 1000 K 和 300 K 的两热源之间工作,试计算(1)热机效率;(2)若低温热源不变,要使热机效率提高到 80%,则高温
32、热源温度需提高多少?(3)若高温热源不变,要使热机效率提高到 80%,则低温热源温度需降低多少?解:(1)卡诺热机效率 121TT%7010003001(2)低温热源温度不变时,若%8030011T 要求 15001TK,高温热源温度需提高500K(3)高温热源温度不变时,若%80100012T 要求 2002TK,低温热源温度需降低100K 8.20 如题 8.20 图所示是一理想气体所经历的循环过程,其中AB和CD是等压过程,BC和DA为绝热过程,已知B点和C点的温度分别为2T和3T求此循环效率这是卡诺循环吗?解:(1)热机效率 121QQ AB等压过程 )(12P1TTCQ 吸热 )(P
33、mo1ABlTTCMMQ CD等压过程 )(12P2TTvCQ 放热 )(Pmol22DCTTCMMQQ)/1()/1(12BABCDCABDCTTTTTTTTTTQQ 根据绝热过程方程得到 AD绝热过程 DDAATpTp11 BC绝热过程 CCBBTpTp111 又 BCDDCBATTTTpppp 专业.专注.学习参考 .231TT(2)不是卡诺循环,因为不是工作在两个恒定的热源之间 8.21(1)用一卡诺循环的致冷机从 7的热源中提取 1000 J 的热量传向 27的热源,需要多少功?从-173向 27呢?(2)一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于作功就愈有利
34、当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利?为什么?解:(1)卡诺循环的致冷机 2122TTTAQe静 727时,需作功 4.71100028028030022211QTTTA J 17327时,需作功 2000100010010030022212QTTTAJ(2)从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的 8.22 如题 8.22 图所示,1 mol 双原子分子理想气体,从初态K300,L2011TV经历三种不同的过程到达末态K300,L4022TV 图中 12为等温线,14为绝热线,42为等压线
35、,13 为等压线,32 为等体线试分别沿这三种过程计算气体的熵变 题 8.22 图 解:21熵变 等温过程 AQdd,VpAdd RTpV 21111221d1dVVVVRTTTQSS 76.52lnln!212RVVRSS J1K 321熵变 312312ddTQTQSS 专业.专注.学习参考 .32V13pVp12lnlndd2331TTCTTCTTCTTCSSTTTT 31等压过程 31pp 3211TVTV 1213VVTT 23等体过程 2233TpTp 3232ppTT 1232ppTT 12V12P12lnlnppCVVCSS 在21等温过程中 2211VpVp 所以 2lnln
36、lnln1212V12P12RVVRVVCVVCSS 241熵变 412412ddTQTQSS 41p42pp12lnlnd024TTCTTCTTCSSTT 41绝热过程 111441144111VVTTVTVT/121/141144411)()(,ppppVVVpVp 在21等温过程中 2211VpVp/112/121/14114)()()(VVppppVV 11241)(VVTT 2lnln1ln12P41P12RVVCTTCSS 8.23 有两个相同体积的容器,分别装有 1 mol 的水,初始温度分别为1T和2T,1T2T,令其进行接触,最后达到相同温度T求熵的变化,(设水的摩尔热容为m
37、olC)解:两个容器中的总熵变 专业.专注.学习参考 .TTTTlTTCTTCSS12ddmomol0 212mol21molln)ln(lnTTTCTTTTC 因为是两个相同体积的容器,故 )()(1mol2molTTCTTC 得 212TTT 21212mol04)(lnTTTTCSS 8.24 把 0的 0.5kg的冰块加热到它全部溶化成 0的水,问:(1)水的熵变如何?(2)若热源是温度为 20 的庞大物体,那么热源的熵变化多大?(3)水和热源的总熵变多大?增加还是减少?(水的熔解热3341gJ)解:(1)水的熵变 612273103345.031TQS J1K(2)热源的熵变 570293103345.032TQS J1K(3)总熵变 4257061221SSS J1K 熵增加