平面向量的正交分解及坐标表示正式版8942.pdf

上传人:得****3 文档编号:83527602 上传时间:2023-03-31 格式:PDF 页数:2 大小:95.78KB
返回 下载 相关 举报
平面向量的正交分解及坐标表示正式版8942.pdf_第1页
第1页 / 共2页
平面向量的正交分解及坐标表示正式版8942.pdf_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《平面向量的正交分解及坐标表示正式版8942.pdf》由会员分享,可在线阅读,更多相关《平面向量的正交分解及坐标表示正式版8942.pdf(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.3.2 平面向量的正交分解及坐标表示 课前预习学案 一、复习回顾:平面向量基本定理:理解:(1)我们把不共线向量、叫做表示这一平面内所有向量的 ;(2)基底不惟一,关键是 ;(3)由定理可将任一向量 a 在给出基底、的条件下进行分解;(4)基底给定时,分解形式 .即1,2是被,唯一确定的数量 二、提出疑惑:如果在平面直角坐标系中选定一组互相垂直的向量作为基低,向量分解情况又会如何呢?课内探究学案 一、探究学习 1平面向量的坐标表示 如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得 1 我们把叫做 ,记作

2、2 其中叫做在轴上的坐标,叫做在轴上的坐标,2 式叫做 与相等的向量的坐标也为.特别地,i=,j=,0=.如图,在直角坐标平面内,以原点 O 为起点作,则点的位置由唯一确定.设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2平面向量的坐标运算(1)若,则=,=.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为、,则 即=,同理可得=.(2)若,则 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.=(x2,y2)(x1,y1)=.(3)若和实数,则.实数与向量的积的坐标等于用这个实

3、数乘原来向量的相应坐标.设基底为、,则,即 二、讲解范例:例 1 已知 A(x1,y1),B(x2,y2),求的坐标.例 2 已知=(2,1),=(-3,4),求+,-,3+4 的坐标.例 3 已知平面上三点的坐标分别为 A(2,1),B(1,3),C(3,4),求点 D 的坐标使这四点构成平行四边形四个顶点.例 4 已知三个力(3,4),(2,5),(x,y)的合力+=,求的坐标.三、课堂练习:1若 M(3,-2)N(-5,-1)且,求 P 点的坐标 2若 A(0,1),B(1,2),C(3,4),则2=.3已知:四点 A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形

4、ABCD是梯形.五、小结(略)六、课后作业(略)七、板书设计(略)课后练习与提高 1、在平面直角坐标系中,已知点 A 时坐标为(2,3),点 B 的坐标为(6,5),则=_,=_。2、已知向量,的方向与 x 轴的正方向的夹角是 30,则的坐标为_。3、下列各组向量中,能作为表示它们所在平面内所有向量的基底是()A B C D 4、已知向量则与的关系是()A不共线 B相等 C同向 D反向 5、已知点 A(2,2)B(-2,2)C(4,6)D(-5,6)E(-2,-2)F(-5,-6)在平面直角坐标系中,分别作出向量并求向量的坐标。参考答案:1、(2,3)(6,5)2、(,2)3、B 4、D 5、略

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁