《六年级数学资料库.pdf》由会员分享,可在线阅读,更多相关《六年级数学资料库.pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、分数乘法 一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(二)、规律:(乘法中比较大小时)一个数(0 除外)乘大于 1 的数,积大于这个数。一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。一个数(0 除外)乘 1,积等于这个数。(三)、分数混合运算的运算顺序和整数的运算顺序相同。(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘
2、法交换律:a b=b a 乘法结合律:(a b)c=a (b c)乘法分配律:(a+b)c=a c+b c a c+b c=(a+b)c 二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或 “占”、“是”、“比”的后面 2、求一个数的几倍:一个数几倍;求一个数的几分之几是多少:一个数几分之几。3、写数量关系式技巧:(1)“的”相当于 “”“占”、“是”、“比”相当于“=”(2)分率前是“的”:单位“1”的量分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量(1 分率)=分率对应量 倒数 1、倒数的意义:乘积
3、是 1 的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是 1 的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数:把小数化为分数,再求倒数。3、1 的倒数是 1;0 没有倒数。因为 11=1;0 乘任何数都得 0,(分母不能为 0)4、真分数的倒数大于 1;假分数的倒数小于或等于 1;带分数的倒数小于 1。分数除法 一、分数除法 1、分数除法的意义:分数除法与整数除法的意义相同,表
4、示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则:除以一个不为 0 的数,等于乘这个数的倒数。3、规律(分数除法比较大小时):(1)、当除数大于 1,商小于被除数;(2)、当除数小于 1(不等于 0),商大于被除数;(3)、当除数等于 1,商等于被除数。二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量(1 分率)=分率对应量 2、解法:(建议:最好用方程解答)(1)方
5、程:根据数量关系式设未知量为 X,用方程解答。(2)算术(用除法):分率对应量对应分率=单位“1”的量 3、求一个数是另一个数的几分之几:就 一个数另一个数 4、求一个数比另一个数多(少)几分之几:求多几分之几:大数小数 1 求多几分之几(大数-小数)小数 求少几分之几:1-小数大数 求少几分之几:(大数-小数)大数 三、比和比的应用(一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15:10=1510=(比值通常用分数表示,也可以用小数或整数表示)前项 比号 后项 比值
6、 3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程速度=时间。4、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、比和除法、分数的联系:前 项 比号“:”后 项 比值 被除数 除号“”除 数 商 分 子 分数线“”分 母 分数值 7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为 0。体育比赛中出现两队的分是 2:0 等,这只是一种记
7、分的形式,不表示两个数相除的关系。(二)、比的基本性质 1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外),分数值不变。比的基本性质:比的 前项和后项同时乘或除以相同的数(0 除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比:用比的前项和后项同时除以它们的最大公因数。两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。两个小数的比:向右移动小数点的位置
8、,先化成整数比再化简。(2)用求比值的方法。注意:最后结果要写成比的形式。如:1510=1510=32 5按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。圆 一、认识圆 1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母 O 表示。它到圆上任意一点的距离都相等 3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母 r 表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母 d 表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,
9、半径决定圆的大小。6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。7、在同圆或等圆内,直径的长度是半径的 2 倍,半径的长度是直径的。用字母表示为:d2r 或 r 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。10、只有 1 一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。只有 2 条对称轴的图形是:长方形 只有 3 条对称轴的图形是:等边三角形 只有 4 条对
10、称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。二、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母 C 表示。2、圆周率实验:在圆形纸片上做个记号,与直尺0 刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数()。3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母(pai)表示。(1)、一个圆的周长总是它直径的 3 倍多一些,这个比值是一个固定的数。圆周率 是一个无限不循环小数。在计算时,一般取 3.14。(2)、在判断时,圆周长与它直径的比值是 倍,而不是 3.14 倍。(3)、世界上第一个把
11、圆周率算出来的人是我国的数学家祖冲之。4、圆的周长公式:C=d 或 C=2 r d=C r=C 2 5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长2 计算方法:C=2 r 2 即 C=r (2)半圆的周长:等于圆的周长的一半加直径 计算方法:C=r2r 三、圆的面积 1、圆的面积:圆所占平面的大小叫做圆的面积。用字母 S 表示。2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。3、圆面积公式的推导:(1)、用逐渐逼近的转化思想:体现
12、化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。(3)、拼出的图形与圆的周长和半径的关系。圆的半径=长方形的宽 圆的周长的一半=长方形的长 因为:长方形面积=长 宽 所以:圆的面积=圆周长的一半圆的半径 S 圆=r r S 圆=r2 4、环形的面积:一个环形,外圆的半径是 R,内圆的半径是 r。(Rr环的宽度)S 环=R 或 S 环 =(R)。5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。例如:在同一个圆里,半径扩大 3 倍,那么直径和周
13、长就都扩大 3 倍,而面积扩大 9 倍。6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。例如:两个圆的半径比是 23,那么这两个圆的直径比和周长比都是 23,而面积比是 49 7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4:8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。9、确定起跑线:(1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)(3)、每相邻两个跑道相隔的距离是:2跑道
14、的宽度(4)、当一个圆的半径增加厘米时,它的周长就增加厘米;当一个圆的直径增加厘米时,它的周长就增加 厘米。11、常用各 值结果:=3.14 2=6.28 3=9.42 5=15.7 6=18.84 7=21.98 9=28.26 10=31.4 16=50.24 36=113.04 64=200.96 96=301.44 4=12.56 8=25.12 25=78.5 12、常用平方数结果 =121 =144 =169 =196 =225 =256 =289 =324 =361 百分数 一、百分数的意义和写法 1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫
15、百分率或百分比。2、百分数和分数的主要联系与区别:(1)联系:都可以表示两个量的倍比关系。(2)区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除 0 以外的自然数。4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“”来表示。二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。(二)百分数
16、的和分数的互化 1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是 100 的分数,能约分要约成最简分数。2、分数化成百分数:用分数的基本性质,把分数分母扩大或缩小成分母是100 的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(三)常见的分数与小数、百分数之间的互化 =0.5=50%=0.2=20%=0.625=62.5%=0.25=25%=0.4=40%=0.125=12.5%=0.75=75%=0.6=60%=1.375=37.5%=0.0625=6.25%=0.8=80%=0.875=87.5%=0.04=4 =0.08=8 =
17、0.12=12 =0.16=16 三、用百分数解决问题(一)一般应用题 1、常见的百分率的计算方法:合格率=发芽率=出勤率=达标率=成活率=出粉率=烘干率=含水率=一般来讲,出勤率、成活率、合格率、正确率能达到 100%,出米率、出油率达不到 100%,完成率、增长了百分之几等可以超过 100%。(一般出粉率在 70、80%,出油率在 30、40%。)2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量(1 分率)=分率对应量 3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为 X,用方程解答。(2)算术(用除法):分率对应量对应分率=单位“1”的量 4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量单位“1”的量 100%或者:求多百分之几:(大数-小数)小数 求少百分之几:(大数-小数)大数