《复习五年高考三年模拟精品数学题库第十二章 统计、.doc》由会员分享,可在线阅读,更多相关《复习五年高考三年模拟精品数学题库第十二章 统计、.doc(41页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中学数学免费网 中学数学免费网第十二章 统计、统计案例第一部分 五年高考荟萃2009年高考题一、选择题1.(2009山东卷理)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品96 98 100 102 104 106 0.150 0.125 0.100 0.075 0.050 克 频率/组距 第8题图 净重的范围是96,106,样本数据分组为96,98),98,100),100,102),102,104),104,106,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 ( ).
2、A.90 B.75 C. 60 D.45答案 A 解析 产品净重小于100克的概率为(0.050+0.100)2=0.300, 已知样本中产品净重小于100克的个数是36,设样本容量为,则,所以,净重大于或等于98克并且小于104克的产品的概率为(0.100+0.150+0.125)2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是1200.75=90.故选A.【命题立意】:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有关的数据.2.(2009四川卷文)设矩形的长为,宽为,其比满足,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。
3、下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是 A.甲批次的总体平均数与标准值更接近 B.乙批次的总体平均数与标准值更接近 C.两个批次总体平均数与标准值接近程度相同 D.两个批次总体平均数与标准值接近程度不能确定答案 A解析 甲批次的平均数为0.617,乙批次的平均数为0.6133.(2009宁夏海南卷理)对变量x, y 有观测数据理力争(,)(i=1,2,,10)
4、,得散点图1;对变量u ,v 有观测数据(,)(i=1,2,,10),得散点图2. 由这两个散点图可以判断。A.变量x 与y 正相关,u 与v 正相关 B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关 D.变量x 与y 负相关,u 与v 负相关答案 C解析 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,选C.4.(2009四川卷文)设矩形的长为,宽为,其比满足,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.59
5、5 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是 A.甲批次的总体平均数与标准值更接近 B.乙批次的总体平均数与标准值更接近 C.两个批次总体平均数与标准值接近程度相同 D.两个批次总体平均数与标准值接近程度不能确定答案 A解析 甲批次的平均数为0.617,乙批次的平均数为0.613备考提示 用以上各数据与0.618(或0.6)的差进行计算,以减少计算量,说明多思则少算。5.(2009陕西卷文)某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为
6、了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为A.9 B.18 C.27 D. 36答案 B 解析 由比例可得该单位老年职工共有90人,用分层抽样的比例应抽取18人.6.(2009福建卷文)一个容量100的样本,其数据的分组与各组的频数如下表组别频数1213241516137则样本数据落在上的频率为A. 0.13 B. 0.39 C. 0.52 D. 0.64答案 C解析 由题意可知频数在的有:13+24+15=52,由频率=频数总数可得0.52. 7.(2009上海卷理)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生
7、在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0 C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为3答案 D 解析 根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A中,中位数为4,可能存在大于7的数;同理,在选项C中也有可能;选项B中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故答案选D.二、填空题8.(200
8、9年广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610号,196200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人. 图 2答案 37, 20解析 由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37. 40岁以下年龄段的职工数为,则应抽取的人数为人.9.(2009浙江卷文)某个容量为的样本的频率分布直 方图如下,则在区间上的数据的频数为 答
9、案 30解析 对于在区间的频率/组距的数值为,而总数为100,因此频数为30.【命题意图】此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力 10.(2009江苏卷)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为= . 答案 解析 考查统计中的平均值与方差的运算.甲班的方差较小,数据的平均值为7,故方差 11.(2009辽宁卷理)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层
10、抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为 h.答案 1013解析 101312.(2009湖北卷文)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在6,10内的频数为 ,数据落在(2,10)内的概率约为 。 答案 64解析 观察直方图易得频数为,频率为13.(2009湖南卷文) 一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被
11、抽到的概率都为,则总体中的个体数为 .答案 120解析 设总体中的个体数为,则14.(2009湖南卷理)一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数数位 .答案 40解析 由条件易知层中抽取的样本数是2,设层总体数是,则又由层中甲、乙都被抽到的概率是=,可得,所以总体中的个数是.15.(2009天津卷理)某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本。已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C
12、专业应抽取_名学生。答案 40解析 C专业的学生有,由分层抽样原理,应抽取名.16(2009重庆卷文)从一堆苹果中任取5只,称得它们的质量如下(单位:克)125 124 121 123 127则该样本标准差 (克)(用数字作答)答案 2解析 因为样本平均数,则样本方差所以17.(2009湖北卷理)样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在内的频数为 ,数据落在内的概率约为 .答案 64 0.4解析 由于在范围内频数、组距是0.08,所以频率是0.08*组距=0.32,而频数=频率*样本容量,所以频数=(0.08*4)*200=64同样在范围内的频数为1
13、6,所以在范围内的频数和为80,概率为80/200=0.4三、解答题18.(2009年广东卷文)(本小题满分13分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.解析 (1)由茎叶图可知:甲班身高集中于之间,而乙班身高集中于 之间。因此乙班平均身高高于甲班; (2) 甲班的样本方差为 57 (3)设身高为176cm的同学被抽中的事件为A; 从乙班10名同学中抽中两名身高不低于1
14、73cm的同学有:(181,173) (181,176) (181,178) (181,179) (179,173) (179,176) (179,178) (178,173) (178, 176) (176,173)共10个基本事件,而事件A含有4个基本事件; ;19.(2009广东卷理)(本小题满分12分)根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间,进行分组,得到频率分布直方图如图5. (1)求直方图中的值; (2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为
15、良或轻微污染的概率.(结果用分数表示已知, ,)解 (1)由图可知,解得;(2);(3)该城市一年中每天空气质量为良或轻微污染的概率为,则空气质量不为良且不为轻微污染的概率为 ,一周至少有两天空气质量为良或轻微污染的概率为.20.(2009山东卷文)(本小题满分12分)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值. (2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体
16、,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.解 (1)设该厂本月生产轿车为n辆,由题意得,所以n=2000. z=2000-100-300-150-450-600=400(2)设所抽样本中有m辆舒适型轿车,因为用分层抽样的方法在C类轿车中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S1,S2;B1,B
17、2,B3,则从中任取2辆的所有基本事件为(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以从中任取2辆,至少有1辆舒适型轿车的概率为.(3)样本的平均数为,那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3
18、, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为.【命题立意】本题为概率与统计的知识内容,涉及到分层抽样以及古典概型求事件的概率问题.要读懂题意,分清类型,列出基本事件,查清个数.,利用公式解答.21.(2009全国卷文)(本小题满分12分)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名工人进行技术考核。(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)求抽取的4名工人中恰有2名男工人的概率。 解析 本题考查概率统计知识
19、,要求有正确理解分层抽样的方法及利用分类原理处理事件概率的能力,第一问直接利用分层统计原理即可得人数,第二问注意要用组合公式得出概率,第三问关键是理解清楚题意以及恰有2名男工人的具体含义,从而正确分类求概率.解 (1)由于甲、乙两组各有10名工人,根据分层抽样原理,要从甲、乙两组中共抽取4名工人进行技术考核,则从每组各抽取2名工人.(2)记表示事件:从甲组抽取的工人中恰有1名女工人,则 (3)表示事件:从甲组抽取的2名工人中恰有名男工人,表示事件:从乙组抽取的2名工人中恰有名男工人, 表示事件:抽取的4名工人中恰有2名男工人。 与独立, ,且故22.(2009安徽卷文)(本小题满分12分)某良
20、种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下: 品种A:357,359,367,368,375,388,392,399,400,405,414, 415,421,423,423,427,430,430,434,443,445,451,454品种B:363,371,374,383,385,386,391,392,394,395,397 397,400,401,401,403,406,407,410,412,415,416,422,430()完成所附的茎叶图()用茎叶图处理现有的数据,有什么优点? ()通过观察茎
21、叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论。思路 由统计知识可求出A、B两种品种的小麦稳定性大小并画出茎叶图,用茎叶图处理数据,看其分布就比较明了。 解析 (1)茎叶图如图所示AB9 7358 73635371 48383 5 69 2391 2 4 457 75 0400 1 1 3 6 75 4 2410 2 5 67 3 3 14224 0 04305 5 3444 145(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,而且可以看出每组中的具体数据.(3)通过观察茎叶图,可以发现品种A的平均每亩产量为411.1千克,品种B的平均亩产量为397.8千克.由此可知,品
22、种A的平均亩产量比品种B的平均亩产量高.但品种A的亩产量不够稳定,而品种B的亩产量比较集中D平均产量附近.23.(2009天津卷文)(本小题满分12分)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂()求从A,B,C区中分别抽取的工厂个数;()若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。解 (1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为,所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2.(2)设为在A区中抽得
23、的2个工厂,为在B区中抽得的3个工厂,为在C区中抽得的2个工厂,这7个工厂中随机的抽取2个,全部的可能结果有:种,随机的抽取的2个工厂至少有一个来自A区的结果有,,同理还能组合5种,一共有11种.所以所求的概率为【考点定位】本小题主要考查分层抽样、用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查运用统计、概率知识解决实际问题的能力。24.(2009全国卷理)(本小题满分12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。(1)求从甲、乙两组各抽取的人数;
24、 (I2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记表示抽取的3名工人中男工人数,求的分布列及数学期望。 分析 (1)这一问较简单,关键是把握题意,理解分层抽样的原理即可。另外要注意此分层抽样与性别无关。(2)在第一问的基础上,这一问处理起来也并不困难。 从甲组抽取的工人中恰有1名女工人的概率(3)的可能取值为0,1,2,3,分布列及期望略.评析:本题较常规,比08年的概率统计题要容易。在计算时,采用分类的方法,用直接法也可,但较繁琐,考生应增强灵活变通的能力。25.(2009宁夏海南卷理)(本小题满分12分)某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另
25、外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。(1)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人; (2)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.表1生产能力分组人数4853表2生产能力分组人数 6 y 36 18(1)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论) (2)分别估计A类工人和B类工人生产
26、能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表) 解 (1)甲、乙被抽到的概率均为,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为 . (2)(i)由题意知A类工人中应抽查25名,B类工人中应抽查75名. 故,得,得 . 频率分布直方图如下 从直方图可以判断:B类工人中个体间的关异程度更小 . (ii) , A类工人生产能力的平均数,B类工人生产能力的平均数以及全工厂工人生产能力的平均数的会计值分别为123,133.8和131.1 .26.(2009辽宁文)(本小题满分12分)某企业有两个分厂生产某种零件,按规定内
27、径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表: 甲厂试分别估计两个分厂生产的零件的优质品率;(1)由于以上统计数据填下面列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”。甲 厂 乙 厂 合计优质品 非优质品 合计附: 解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为(2) 甲厂乙厂合计优质品360320680非优质品140180320 合计5005001000 所以有99%的把握认为“两
28、个分厂生产的零件的质量有差异”。27.(2009宁夏海南卷文)(本小题满分12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A类工人中和B类工人各抽查多少工人? (2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2表1:生产能力分组人数4853表2:生产能力分组人数 6 y 36 18(1)先确定,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程
29、度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(2)分别估计类工人和类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)。解 (1)类工人中和类工人中分别抽查25名和75名.(2)()由,得, ,得. 频率分布直方图如下 从直方图可以判断:类工人中个体间的差异程度更小. (2) , , A类工人生产能力的平均数,B类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.2005-2008年高考题29 1 1 5 83 0 2 63 1 0 2 4 7一、选择题1、(2008
30、山东理)右图是根据山东统计年整2007中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图 中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 ( )A.304.6B.303.6 C.302.6 D.301.6答案 B解析 本题考查茎叶图、用样本数字特征估计总体特征。2.(2008天津)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的
31、样本,应抽取超过45岁的职工_人答案 103.(2008上海)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a、b的取值分别是 答案 10.5和10.54.(2008湖南)对有n(n4)个元素的总体进行抽样,先将总体分成两个子总体和 (m是给定的正整数,且2mn-2),再从每个子总体中各随机抽取2个元素组成样本.用表示元素i和j同时出现在样本中的概率,则= ; 所有 (1ij的和等于 . 答案 ,65、(2008山东文)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为(
32、)分数54321人数2010303010A B C3 D答案 B解析 本小题主要考查平均数、方差、标准差的概念及其运算. 6.(2008广东理)某校共有学生2000名,各年级男、女生人数如下表已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为 ( )一年级二年级三年级女生373男生377370A24 B18 C.16 D.12答案 C解析 依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是,即总体中各个年级的人数比例为,故在分层抽样中应在三年级抽取的学生人数为7(2006江苏)某人5次上班途中所花的
33、时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则xy的值为 ( )A.1 B.2 C.3 D.4答案 D思路 本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法正确解答 由题意可得:x+y=20,(x-10)2+(y-10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出,设x=10+t, y=10-t, ,选D8.(2007宁夏)甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩环数78910频数5555乙的成绩环数78910频数6446丙的成绩环数78910频数4664分别表示甲、乙
34、、丙三名运动员这次测试成绩的标准差,则有(). . .答案 B9(2006四川)甲校有名学生,乙校有名学生,丙校有名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为人的样本,应在这三校分别抽取学生 ( )A.人,人,人 B.人,人,人 C.人,人,人 D.人,人,人 答案 B解析 甲校有名学生,乙校有名学生,丙校有名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为人的样本,应在这三校分别抽取学生人,人,人,选B.10.(2007湖北文)为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示根
35、据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为 ( )A300 B360 C420 D4500.080.070.060.050.040.030.020.0154.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5体重(kg)答案 B11(2007湖南文)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( A )A B C D答案 A12. (2006重庆)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体
36、重在56.5,64.5的学生人数是A.20 B.30 C.40 D.50答案 C解析 根据该图可知,组距为2,得这100名学生中体重在的学生人数所占的频率为(0.03+0.05+0.05+0.07)2=0.4,所以该段学生的人数是40,选C.12(2006重庆)某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本。若采用分层抽样的方法,抽取的中型商店数是 ( )A.2 B.3 C.5 D.13答案 C解析 各层次之比为:30:75:1952:5:13,所抽取的中型商店数是5.13.(2007天津文)从一堆苹
37、果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:分组频数123101则这堆苹果中,质量不小于120克的苹果数约占苹果总数的 答案 7014.(2007陕西文)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4B.5C.6D.7答案 C15.( 2007陕西文)某校有学生2000人,其中高三学生500人为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本则样本中高三学生的人数
38、为_答案 50013141516171819秒频率/组距0.360.340.180.060.040.0216.(2007山东理)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;第六组,成绩大于等于18秒且小于等于19秒右图是按上述分组方法得到的频率分布直方图设成绩小于17秒的学生人数占全班总人数的百分比为,成绩大于等于15秒且小于17秒的学生人数为,则从频率分布直方图中可分析出和分别为( )A0.9,35 B0.9,45C0.1,35 D0.1,45答案 A17(200
39、6湖南)某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是分.答案 85解析 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是分.18(2006全国II)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如右图)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层
40、抽样方法抽出100人作进一步调查,则在2500,3000)(元)月收入段应抽出 人答案 2 500解析 由直方图可得(元)月收入段共有人按分层抽样应抽出人19(2006山东)某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是.答案 150解 抽取教师为160-150=10人,所以学校教师人数为2400=150 人.20.(2008广东文)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是.答案 13解析 .21.(2007全国I文)从某自动包装机包装的食盐中,随机抽取袋,测得各袋的质量分