《高中数学排列组合和概率第十六课时教案.pdf》由会员分享,可在线阅读,更多相关《高中数学排列组合和概率第十六课时教案.pdf(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、等可能事件的概率【教学目的】通过等可能事件概念的讲解,使学生得到一种较简单的、较现实的计算事件概率的方法。【教学重点和难点】熟练、准确地掌握有关排列、组合的知识是顺利求出等可能事件概率的重要方面。【教学过程】一、复习提问1.上节课布置作业的第2 题,每位同学得到的结果是否接近于同一个小于1 的正数0.5?你们是否已经感觉到计算事件概率的繁琐性?大量重复的试验是否可以避免?2.上抛一个刻着1、2、3、4、5、6 字样的正六面体方块出现字样为“3”的事件的概率是多少?出现字样为“0”的事件的概率是多少?上抛一个刻着六个面都是“P”字样的正方体方块出现字样为“P”的事件的概率是多少?二、新课引入随机
2、事件的概率,一般可能通过大量重复试验求得其近似值。但对于某些随机事件,也可能不通过重复试验,而只通过对一次试验中可能出现的结果的分析来计算其概率。这种计算随机事件概率的方法,比经过大量试验得出来的概率,有更简便的运算过程;有更现实的计算方法。这一节课程的学习,对有关的排列、组合的基本知识和基本思考问题的方法有较高的要求,因此对于排列、组合还不十分熟悉的同学应当先补上这一课。三、进行新课1.等可能事件的意义:对于有些随机试验来说,每次试验只可能出现有限个不同的试验结果,而出现所有这些不同结果的可能性是相等的(或叫机会均等原理)。例如,从52 张扑克牌中任意抽取一张(记作事件A),那么不论抽到哪一
3、张都是机会均等的,也就是等可能性的,不论抽到哪一张花色的红心的牌(记作事件B)也都是等可能性的;又不论抽到哪一张印有“A”字样的牌(记作事件C)也都是等可能性的。下面我们给出事件A、B、C发生的概率的概念和计算方法。2.等可能性事件概率的计算方法(概率的古典定义):如果一次试验中共有n 种等可能出现的结果,其中事件A包含的结果有m种,那么事件A的概率 P(A)是 m/n(m n)。在上例中:P(A)=52/52=1,P(B)=13/52=1/4,P(C)=4/52=1/13。这里再介绍一种概率古典定义的叙述方法:若事件A1,A2,A3,An 发生的机会是相同的,则称它们为等可能性事件,其中Ai
4、(i=1,2,n)称为基本事件(n 为基本事件总数),如果事件A中包含的结果有其中的m种,那么事件A的概率 P(A)=m/n,即四、小结用这节中的观点求随机事件的概率时,首先对于在试验中出现的结果的可能性认为是相等的;其次是通过一个比值的计算来确定随机事件的概率,并不需要通过大量重复的试验。因此,从方法上来说这一节所提到的方法,要比上一节所提到的方法简便得多,并且更具有实用价值。五、布置作业1.把 100 张已编号的卡片(从1 号到 100 号),从中任取1 张,计算:(1)卡片号是偶数的概率;(2)卡片号是5 的倍数的概率;(3)卡片号是质数的概率;(4)卡片号是111 的概率;(5)卡片号是1 的概率;(6)卡片号是从1 号到 100 号中任意一号的数的概率。2.一个均匀材料做的正方体玩具,各个面上分别标以数1、2、3、4、5、6。(1)将这玩具抛掷1 次,朝上的一面出现偶数的概率是多少?(2)将这玩具抛掷2 次,朝上的一面的数之和为7 的概率是多少?(3)将这玩具抛掷3 次,朝上的一面的数之和为10 的概率是多少?3.某城市的电话号码由六个数字组成,每个数字可以是从0 到 9 这十个数字中的任一个,计算电话号码由六个不同数字组成的概率是多少?