《最新苏教版四年级下册数学知识点汇总.pdf》由会员分享,可在线阅读,更多相关《最新苏教版四年级下册数学知识点汇总.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 苏教版小学四年级下册数学知识点汇总第一单元乘法一、三位数乘两位数笔算1、三位数乘两位数,所得的积不是四位数就是五位数。2、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。二、乘数末尾有 0 的乘法1、末尾有 0 的乘法计算方法:现把两个乘数不是零的部分相乘,再看两个乘数末尾 一共有几个零,就在积的 末尾加几个零。2.乘积末尾 0 的个数是由乘数末尾有几个0 决定的。(错误)因为乘法计算过程中末尾也会出现0.第二单元升和毫升一容量的理解 1.容量是一个物体可以容纳的
2、体积。二、升和毫升之间的进率1、1 升(L)=1000毫升(ml、mL)2.计量水、油、饮料等液体时,一般用升或毫升做单位。2、生活中的升和毫升的运用:生活中一杯水大约250 毫升;一个高压锅大约盛水6 升;一个家用水池大约盛水30 升,一个脸盆大约盛水 10 升;一个浴缸大约盛水400升;一个热水瓶的容量2 大约是 2升,一个金鱼缸大约有水30 升,一瓶饮料大约是400毫升,一锅水有 5 升,一汤勺水有10 毫升。3、一个健康的成年人血液总量约为4000-5000毫升。义务献血者每次献血量一般为200毫升。4、1 毫升大约等于 23 滴水。第三单元三角形一、三角形的特征及分类1、围成三角形的
3、条件:两边之和大于第三边。2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。3、三角形具有稳定性(也就是当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变),生活中很多物体利用了这样的特性。如:人字梁、斜拉桥、自行车车架。4、三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)5、有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90 度。两条直角边互为底和高。)6、有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)7、任意一个三角形 至少有两个锐角,都有三条高,三角形的内角和都是 180
4、度。(锐角三角形的三条高都在三角形内;直角三角形有两条高落在两条直角边上;钝角三角形有两条高在三角形外)。8、把一个三角形分成两个直角三角形就是画它的高。二、三角形内角和、等腰三角形、等边三角形1、两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60,所有等边三角形的三个角都是 60。)2、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于 45,顶角等于 90。3、求三角形的
5、一个角=180另外两角的和4、等腰三角形的顶角=180底角 2=180底角底角3 5、等腰三角形的底角=(180顶角)2 6、一个三角形最大的角是60 度,这个三角形一定是等边三角形。7、多边形的内角和=180(n2)n 为边数 第四单元混合运算一、不含括号的混合运算1.四则运算中不含括号时,先做乘除再做加减。二、含有小括号的混合运算1、要先算小括号里面的。三、含有中括号的混合运算1.既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。第五单元平行四边形和梯形一、认识平行四边形1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。底
6、和高一定要对应。一个平行四边形有无数条高。2、用两块完全一样的三角尺可以拼成一个平行四边形。3、平行四边形容易变形(不稳定性)。生活中许多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平4 行四边形不是轴对称图形。二、认识梯形1、只有一组对边平行的四边形叫梯形。平行的一组对边较短的叫做梯形的上底,较长的叫做梯形的下底,不平行的一组对边叫做梯形的腰,两条平行线之间的距离叫做梯形的高(无数条)。2、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。3、两个完全一样 的梯形可以拼成一个平行四
7、边形。4、正方形、长方形属于特殊的平行四边形。第六单元找规律1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:23。即 n(n1)1(2)5 个球队踢球,每两队踢一场,要踢多少场:4+3+2+1 即(n1)(n2)1 第七单元运算律1、乘法交换律:ab=ba 2、乘法结合律:(ab)c=a(b c)3、乘法分配律:(a+b)c=ac+bc(合起来乘等于分别乘)4、衍生:(a-b)c=ac-b c 5、简便运算典型例题:10235=(100+2)35 36101-3636(101-1)3598=35(100-2)=35100-352 5
8、 第八单元对称、平移和旋转一、轴对称图形1、画图形的另一半:(1)找对称轴(2)找对应点(3)连成图形。二、对称轴的条数1、正三边形(等边三角形)有3 条对称轴,正四边形(正方形)有 4条对称轴,正五边形有5 条对称轴,正n 变形有 n条对称轴。三、平移和旋转1、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)2、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。)第九单元倍数和因数1、43=12,或 123=4。那么 12 是 3 和 4
9、 的倍数,3 和 4是 12 的因数。(倍数和因数是相互存在的,不可以说12 是倍数,或者说 3是因数。只能说谁是谁的倍数,谁是谁的因数。)2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。如 18的因数有:1、2、3、6、9、18。3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。如:18的倍数有:18、36、54、72、90(省略号非常重要)4、一个数最大的因数等于这个数最小的倍数(都是它本身)。5、是 2的倍数的数叫做 偶数。(个位是 0、2、4、6、8 的数)6、不是 2 的倍数的数叫做 奇数。(个位是 1、3、5、7、9 的数)7、个位上是
10、 2、4、6、8、0 的数是 2的倍数,个位上是 0 或5 的数是 5 的倍数。8、既是 2 的倍数又是 5 的倍数个位上一定是0。(如:10、20、6 30、40)9、一个数各位上数字的和是3 的倍数,这个数就是 3 的倍数。(如:453 各位上数字的和是 4+3+5=12,因为 12是 3 的倍数,所以 453也是 3 的倍数。)10、一个数只有 1 和它本身两个因数的数叫素数(或质数)。如:2、3、5、7、11、13、17、192 是素数中唯一的偶数。(所以“所有的素数都是奇数”这一说法是错误的。)11、一个数除了 1 和它本身两个因数外,还有其他的因数的数叫合数。如:4、6、8、9、1
11、012、1 既不是素数也不是合数,因为 1 的因数只有 1 个:1。素数只有 2 个因数,合数 至少有 3 个因数(如:9 的因数有:1、3、9)。13、哥德巴赫猜想:任何大于4 的偶数都可以表示成两个奇素数之和。如 6=3+3 8=3+5,10=5+5,12=5+7 等等。14、100 以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、71、73、79、83、89、97。(共 25 个)15、三个连续的自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是 3 的倍数。第十单元用计算器探索规律1、积
12、的变化规律:一个因数不变,另一个因数 乘或除以几,得到的积等于原来的积 乘或除以几。如:AB=10 那么 A(B5)=105 (A2)B=10 2 如果两个因数 同时扩大几倍,得到的积等于原来的积 乘两个因数分别扩大倍数的乘积。如:AB=10 那么(A 2)(B7 3)=10(23)如果两个因数 同时缩小几倍,得到的积等于原来的积 除以两个因数同时缩小倍数的乘积。如:AB=10 那么(A2)(B3)=10(2 3)如果一个因数扩大几倍,另一个因数缩小相同的倍数,那么积不变。如:AB=10 那么(A3)(B3)=10 2、商的变化规律:被除数和除数同时乘(或除以)相同的数(0 除外),商不变。商
13、不变规律也可以应用于除法计算。在计算两个末尾都有0的除法算式中,应用“被除数和除数除以相同的数,商不变”,这样计算比较简便。注意:被除数的变化会带来余数的变化。如:90040,虽然在计算时被除数和除数同时划去一个零,算到最后一步是10-8=2,但是余数并不是2,而是 20。被除数乘(或除以)一个数,除数不变,商也乘几(或除以)几。被除数不变,除数乘或除以一个数(0 除外),商也除以几或乘几。如:AB=10 那么 A(B2)=102 A(B2)=102 第十二单元统计1、折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。折线统计图的制作步骤:定点写数据连线写日期第十三单元
14、用字母表示数1、用字母表示数的基本规律:如果正方形的边长用a 表示,周长用 C表示,面积用 S表示。那么:正方形的周长:C=a 4 正方形的面积:S=aa。a4 或 4a 通常可以写成 4?a 或 4a;aa 可以写成 a?a,也可8 以写成 a2,读作“a 的平方”。如果是 a 与 1 相乘,就可以直接写成 a。附:常用数量关系正方形的面积=边长边长(S=aa=a2)正方形的周长=边长4(C=a4=4a)长方形的面积=长宽 (S=ab=ab)长方形的周长=(长+宽)2 C=(ab)2 总价=单价数量单价=总价数量数量=总价单价路程=速度时间速度=路程时间时间=路程速度工总=工效时间工效=工总时间时间=工总工效房间面积=每块地面砖面积块数块数=房间面积每块面积(简称:大面积除以小面积)相遇的路程=(甲速度+乙速度)相遇的时间=甲速度时间+乙速度时间相距的路程=(甲速度乙速度)时间=甲速度时间乙速度时间