《高中数学第15课时《分数指数幂》教案(2)(学生版)苏教版必修1.pdf》由会员分享,可在线阅读,更多相关《高中数学第15课时《分数指数幂》教案(2)(学生版)苏教版必修1.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学第 15 课时分数指数幂教案(2)(学生版)苏教版必修1 1/3 第十五课时分数指数幂(2)【学习导航】知识网络学习要求1能熟练地进行分数指数幂与根式的互化;2熟练地掌握有理指数幂的运算法则,并能进行运算和化简3会对根式、分数指数幂进行互化;4培养学生用联系观点看问题自学评价1正数的分数指数幂的意义:(1)正数的正分数指数幂的意义是mna0,1am nNn;(2)正数的负分数指数幂的意义mna0,1am nNn2分数指数幂的运算性质:即1rsa a0,ar sQ,2sra0,ar sQ,3rab0,0,abrQ3.有理数指数幂的运算性质对 无理数指数幂指数幂同样适用.4.0的正分数指数
2、幂等于 .【精典范例】例 1:求值(1)12100,(2)238(3)329,(4)34181点评:解题的关键是利用分数指数幂的运算性质例 2:用分数指数幂表示下列各式(0)a:(1)2aa;(2)53aa;(3)a a分析:先将根式写成分数指数幂的形式,然后进行运算点评:利用分数指数幂进行根式计算时,结果可化为根式的形式或保留分数指数幂的形式,但不能既有根式又有分数指数幂根式分数指数幂有理数指数幂无理数指数幂性质运用分数指数幂与方程高中数学第 15 课时分数指数幂教案(2)(学生版)苏教版必修1 2/3 例 3:已知 a+a1=3,求下列各式的值:(1)21a-21a;(2)23a-23a点
3、评:要学会从整体上寻求已知条件与结论的联系;指数的概念推广后,初中所学的乘法公式和因式分解的变形技巧同样适用.追踪训练一1.计算下列各式的值(式中字母都是正数)(1)(xy221x21y)3121)(xy(2)23 69)(a26 39)(a2.已知11223xx,求33222232xxxx的值.3.已知221xa,求33xxxxaaaa的值.【选修延伸】一、分数指数幂与方程例 4:利用指数的运算法则,解下列方程:(1)43x+2=25681x(2)2x+262x18=0 分析:利用分数指数幂的性质将方程两边转化为同底的指数幂.点评:将指数方程转化为一元一次或一元二次方程是解题的关键.思维点拔:(1)根式与分数指数幂运算要灵活地互化;(2)一般地在化简过程中,先将根式化为分数指数幂,然后利用同底运算性质进行运算.追踪训练二1化简:aa a236639494()()aa()高中数学第 15 课时分数指数幂教案(2)(学生版)苏教版必修1 3/3()A16a()B8a()C4a()D2a3设a1,b0,ab+ab=22,则aba b()()A6()B2或2()C2()D2学生质疑教师释疑