2020年最新电大工程数学(本)期末复习重要知识点参考历总结.doc

上传人:知****量 文档编号:83086184 上传时间:2023-03-28 格式:DOC 页数:22 大小:1.67MB
返回 下载 相关 举报
2020年最新电大工程数学(本)期末复习重要知识点参考历总结.doc_第1页
第1页 / 共22页
2020年最新电大工程数学(本)期末复习重要知识点参考历总结.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2020年最新电大工程数学(本)期末复习重要知识点参考历总结.doc》由会员分享,可在线阅读,更多相关《2020年最新电大工程数学(本)期末复习重要知识点参考历总结.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选资料一、单项选择题1设都是n阶方阵,则下列命题正确的是( ) 2设均为阶可逆矩阵,则下列等式成立的是( )3. 设为阶矩阵,则下列等式成立的是()4设为阶矩阵,则下列等式成立的是( )5设A,B是两事件,则下列等式中( ,其中A,B互不相容 )是不正确的6设A是矩阵,是矩阵,且有意义,则是( )矩阵7设是矩阵,是矩阵,则下列运算中有意义的是()8设矩阵的特征值为0,2,则3A的特征值为 ( 0,6 ) 9. 设矩阵,则A的对应于特征值的一个特征向量=( ) 10设是来自正态总体的样本,则( )是无偏估计11设是来自正态总体的样本,则检验假设采用统计量U =()12设,则()13 设,则(0

2、.4 )14 设是来自正态总体均未知)的样本,则( )是统计量15若是对称矩阵,则等式()成立16若( )成立,则元线性方程组有唯一解 17. 若条件(且 )成立,则随机事件,互为对立事件18若随机变量X与Y相互独立,则方差=( )19若X1、X2是线性方程组AX=B的解而是方程组AX = O的解则()是AX=B的解20若随机变量,则随机变量( )21若事件与互斥,则下列等式中正确的是( )22. 若,则(3)30. 若,(),则23. 若满足(),则与是相互独立24. 若随机变量的期望和方差分别为和则等式( )成立25. 若线性方程组只有零解,则线性方程组(可能无解)26. 若元线性方程组有

3、非零解,则()成立27. 若随机事件,满足,则结论(与互不相容 )成立 28. 若,则秩(1 )29. 若,则( )30向量组的秩是( 3 )31向量组的秩是(4)32. 向量组的一个极大无关组可取为()33. 向量组,则()34对给定的正态总体的一个样本,未知,求的置信区间,选用的样本函数服从(t分布) 35对来自正态总体(未知)的一个样本,记,则下列各式中( )不是统计量36. 对于随机事件,下列运算公式()成立37. 下列事件运算关系正确的是( )38下列命题中不正确的是( A的特征向量的线性组合仍为A的特征向量)39. 下列数组中,()中的数组可以作为离散型随机变量的概率分布40. 已

4、知2维向量组,则至多是(2)41. 已知,若,则( )42. 已知,若,那么()43. 方程组相容的充分必要条件是( ),其中,44. 线性方程组解的情况是(有无穷多解)45. 元线性方程组有解的充分必要条件是( )46袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是( )47. 随机变量,则()48( )二、填空题1设均为3阶方阵,则 8 2设均为3阶方阵,则-18 3. 设均为3阶矩阵,且,则84. 设是3阶矩阵,其中,则125设互不相容,且,则0 6. 设均为n阶可逆矩阵,逆矩阵分别为,则7. 设,为两个事件,若,则称与相互独立8设为n阶方阵,若存在

5、数l和非零n维向量,使得,则称l为的特征值 9设为n阶方阵,若存在数l和非零n维向量,使得,则称为相应于特征值l的特征向量 10. 设是三个事件,那么发生,但至少有一个不发生的事件表示为.11. 设为矩阵,为矩阵,当为()矩阵时,乘积有意义12. 设均为n阶矩阵,其中可逆,则矩阵方程的解13设随机变量,则a =0.3 14设随机变量X B(n,p),则E(X)= np15. 设随机变量,则1516设随机变量的概率密度函数为,则常数k = 17. 设随机变量,则18. 设随机变量,则19. 设随机变量的概率密度函数为,则20. 设随机变量的期望存在,则021. 设随机变量,若,则22设为随机变量

6、,已知,此时2723设是未知参数的一个估计,且满足,则称为的无偏 估计24设是未知参数的一个无偏估计量,则有25设三阶矩阵的行列式,则=2 26设向量可由向量组线性表示,则表示方法唯一的充分必要条件是 线性无关 27设4元线性方程组AX=B有解且r(A)=1,那么AX=B的相应齐次方程组的基础解系含有 3 个解向量28. 设是来自正态总体的一个样本,则29. 设是来自正态总体的一个样本,则30设,则的根是31设,则的根是1,-1,2,-2 32.设,则233若,则0.334若样本来自总体,且,则 35若向量组:,能构成R3一个基,则数k 36若随机变量X ,则 37. 若线性方程组的增广矩阵为

7、,则当()时线性方程组有无穷多解 38. 若元线性方程组满足,则该线性方程组有非零解39. 若,则0.340. 若参数的两个无偏估计量和满足,则称比更有效41若事件A,B满足,则 P(A - B)= 42. 若方阵满足,则是对称矩阵43如果随机变量的期望,那么2044如果随机变量的期望,那么2045. 向量组线性相关,则k=46. 向量组的极大线性无关组是( )47不含未知参数的样本函数称为统计量48含有零向量的向量组一定是线性相关的49. 已知,则0.650. 已知随机变量,那么2.451. 已知随机变量,那么352行列式的元素的代数余子式的值为= -56 53. 掷两颗均匀的骰子,事件“点

8、数之和为4”的概率是( ).54. 在对单正态总体的假设检验问题中,检验法解决的问题是(未知方差,检验均值)55. 是关于的一个多项式,该式中一次项系数是256. 57. 线性方程组中的一般解的自由元的个数是2,其中A是矩阵,则方程组增广矩阵= 3 58. 齐次线性方程组的系数矩阵经初等行变换化为则方程组的一般解为是自由未知量)59. 当=1 时,方程组有无穷多解1设矩阵,且有,求解:利用初等行变换得即 由矩阵乘法和转置运算得2设矩阵,求解:利用初等行变换得即 由矩阵乘法得 3设矩阵,求:(1);(2)解:(1)因为 所以 (2)因为 所以 4设矩阵,求解:由矩阵乘法和转置运算得利用初等行变换

9、得即 5设矩阵,求(1),(2)解: (1) (2)利用初等行变换得即 6已知矩阵方程,其中,求解:因为,且 即 所以 7已知,其中,求解:利用初等行变换得即 由矩阵乘法运算得 8求线性方程组 的全部解解: 将方程组的增广矩阵化为阶梯形方程组的一般解为:(其中为自由未知量) 令=0,得到方程的一个特解. 方程组相应的齐方程的一般解为: (其中为自由未知量)令=1,得到方程的一个基础解系. 于是,方程组的全部解为:(其中为任意常数) 9求齐次线性方程组 的通解 解: A= 一般解为 ,其中x2,x4 是自由元 令x2 = 1,x4 = 0,得X1 =; x2 = 0,x4 = 3,得X2 =所以

10、原方程组的一个基础解系为 X1,X2 原方程组的通解为: ,其中k1,k2 是任意常数 10设齐次线性方程组,为何值时方程组有非零解?在有非零解时,求出通解解:因为 A = 时,所以方程组有非零解 方程组的一般解为: ,其中为自由元 令 =1得X1=,则方程组的基础解系为X1通解为k1X1,其中k1为任意常数 27罐中有12颗围棋子,其中8颗白子,4颗黑子若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率 解:设=“取到3颗棋子中至少有一颗黑子”,=“取到的都是白子”,=“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则(1) (2)=11求下列

11、线性方程组的通解解利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即方程组的一般解为:,其中,是自由未知量 令,得方程组的一个特解方程组的导出组的一般解为:,其中,是自由未知量令,得导出组的解向量;令,得导出组的解向量 所以方程组的通解为:,其中,是任意实数 12. 当取何值时,线性方程组有解,在有解的情况下求方程组的全部解解:将方程组的增广矩阵化为阶梯形由此可知当时,方程组无解。当时,方程组有解。此时相应齐次方程组的一般解为 (是自由未知量)分别令及,得齐次方程组的一个基础解系令,得非齐次方程组的一个特解由此得原方程组的全部解为(其中为任意常数)13当取何值时,线性方程组 有解,在有

12、解的情况下求方程组的全部解解:将方程组的增广矩阵化为阶梯形由此可知当时,方程组无解。当时,方程组有解。此时齐次方程组化为分别令及,得齐次方程组的一个基础解系 令,得非齐次方程组的一个特解 由此得原方程组的全部解为(其中为任意常数)14设向量组,求这个向量组的秩以及它的一个极大线性无关组 解:因为( )= 所以,r() = 3 它的一个极大线性无关组是 (或)15设,试求: (1);(2)(已知)解:(1) (2) 16设,试求:(1);(2)(已知)解:(1) (2) 17设随机变量(1)求;(2)若,求k的值 (已知)解:(1)1 = 11() = 2(1)0.045 (2) 1 1 即k4

13、 = -1.5, k2.518设随机变量X N(3,4)求:(1)P(1 X 7);(2)使P(X a)=0.9成立的常数a (已知,) 解:(1)P(1 X 7)= = 0.9773 + 0.8413 1 = 0.8186 (2)因为 P(X a)= 0.9所以 ,a = 3 + = 5.56 19设,求和.(其中,)解:设 = 20从正态总体N(,9)中抽取容量为64的样本,计算样本均值得= 21,求的置信度为95%的置信区间(已知 ) 解:已知,n = 64,且 因为 = 21,且 所以,置信度为95%的的置信区间为: 21从正态总体N(,4)中抽取容量为625的样本,计算样本均值得=

14、2.5,求的置信度为99%的置信区间.(已知 )解:已知,n = 625,且 因为 = 2.5, 所以置信度为99%的的置信区间为: . 22据资料分析,某厂生产的一批砖,其抗断强度,今从这批砖中随机地抽取了9块,测得抗断强度(单位:kgcm2)的平均值为31.12,问这批砖的抗断强度是否合格()解: 零假设由于已知,故选取样本函数 已知,经计算得, 由已知条件, 故拒绝零假设,即这批砖的抗断强度不合格。23某车间生产滚珠,已知滚珠直径服从正态分布今从一批产品里随机取出9个,测得直径平均值为15.1mm,若已知这批滚珠直径的方差为,试找出滚珠直径均值的置信度为0.95的置信区间解:由于已知,故

15、选取样本函数已知,经计算得 滚珠直径均值的置信度为0.95的置信区间为,又由已知条件,故此置信区间为24某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5 cm,标准差为0.15cm.从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm)10.4,10.6,10.1,10.4问:该机工作是否正常(, )?解:零假设.由于已知,故选取样本函数 经计算得, 由已知条件,且 故接受零假设,即该机工作正常.25. 已知某种零件重量,采用新技术后,取了9个样品,测得重量(单位:kg)的平均值为14.9,已知方差不变,问平均重量是否仍为15()? 解: 零假设由于已知

16、,故选取样本函数已知,经计算得,由已知条件,故接受零假设,即零件平均重量仍为1526某一批零件重量,随机抽取4个测得重量(单位:千克)为14.7, 15.1, 14.8, 15.2可否认为这批零件的平均重量为15千克(已知)解:零假设由于已知,故选取样本函数经计算得,已知,故接受零假设,即可以认为这批零件的平均重量为15千克. 四、证明题1设是阶对称矩阵,试证:也是对称矩阵证明:是同阶矩阵,由矩阵的运算性质可知已知是对称矩阵,故有,即由此可知也是对称矩阵,证毕 2设是n阶矩阵,若= 0,则 证明:因为 = 所以 3设n阶矩阵A满足,则A为可逆矩阵证明: 因为 ,即 所以,A为可逆矩阵 4设向量

17、组线性无关,令,证明向量组线性无关。 证明:设,即 因为线性无关,所以 解得k1=0, k2=0, k3=0,从而线性无关 5设随机事件,相互独立,试证:也相互独立证明: 所以也相互独立证毕6设,为随机事件,试证: 证明:由事件的关系可知而,故由概率的性质可知 7设,是两个随机事件,试证: 证明:由事件的关系可知 而,故由加法公式和乘法公式可知 证毕8设,为随机事件,试证:证明:由事件的关系可知而,故由概率的性质可知 即 证毕 9. 设是阶矩阵,可逆,且,试证:证明:在的两端右乘,得上式左端为 右端为故有 证毕。10. 设,是同阶对称矩阵,试证:也是对称矩阵 证明:因 故可知是对称矩阵证毕 1

18、1. 可逆的对称矩阵的逆矩阵也是对称矩阵 证明:设可逆,且 则,所以也是对称矩阵证毕 12. 设是线性无关的,证明, 也线性无关.证明: 设有一组数,使得 成立,即,由已知线性无关,故有该方程组只有零解,得,故是线性无关的证毕13. 设,是两个随机事件,试证: 证明:由事件的关系可知而,故由加法公式和乘法公式可知 证毕 14. 已知随机事件,满足,试证: 证明:已知,由事件的关系可知而,故由概率的性质可知即 证毕15. 设随机事件,满足,试证: 证明: 由可知,因此得,故由因为,故有 证毕。8. 设随机变量的均值、方差都存在,且,试证:随机变量的均值为0证明: 结论得证 If we dont

19、do that it will go on and go on. We have to stop it; we need the courage to do it.His comments came hours after Fifa vice-president Jeffrey Webb - also in London for the FAs celebrations - said he wanted to meet Ivory Coast international Toure to discuss his complaint.CSKA general director Roman Bab

20、aev says the matter has been exaggerated by the Ivorian and the British media.Blatter, 77, said: It has been decided by the Fifa congress that it is a nonsense for racism to be dealt with with fines. You can always find money from somebody to pay them.It is a nonsense to have matches played without

21、spectators because it is against the spirit of football and against the visiting team. It is all nonsense.We can do something better to fight racism and discrimination.This is one of the villains we have today in our game. But it is only with harsh sanctions that racism and discrimination can be was

22、hed out of football.The (lack of) air up there Watch mCayman Islands-based Webb, the head of Fifas anti-racism taskforce, is in London for the Football Associations 150th anniversary celebrations and will attend Citys Premier League match at Chelsea on Sunday.I am going to be at the match tomorrow a

23、nd I have asked to meet Yaya Toure, he told BBC Sport.For me its about how he felt and I would like to speak to him first to find out what his experience was.RICHMOND After hearing that Washington Redskins tight ends coach Sean McVay had been promoted to offensive coordinator in January, tight end J

24、ordan Reed called McVay to offer his congratulations and ask a question. Reed and McVay grew close last season, and Reed wondered whether McVay would still have time for him.“Can you believe that?” asked McVay, who smiled and shook his head while recalling the conversation Friday during a break from

25、 practice. “He actually thought Id be too busy for him. You always make time for guys like him.”Jason Reid is a sports columnist with the Washington Post. He joined the Posts Redskins team in 2007 after 15 years covering many beats at the Los Angeles Times. View ArchiveGoogle+Especially if youre an

26、assistant coach who hopes to remain employed.Coach Jay Gruden has big plans for the young tight end, whose combination of size, speed hes listed at 6 feet 2, 237 pounds and covers the 40-yard dash in 4.7 seconds and route running make him a major matchup problem for defenses. And with deep-threat wi

27、de receiver DeSean Jackson often expected to draw double teams, Reed and others in the Redskins receiving corps should benefit from single coverage.No one needs to tell Gruden how to best use Reed. However, if Gruden ever has a question about Reed, he can call on McVay, who knows him better than any

28、one in the organization. The work they did together last fall could help Reed blast off this year. From the start, they developed a model coach-player relationship. “Hes o bviously a great player, but I really enjoy him as a person, too,” McVay said. “Hes a great guy, so you want to continue to be i

29、nvolved with him.”Generally, head coaches are father figures, disciplinarians. Position coaches are supposed to be like big brothers. The best skillfully walk the line of being a supervisor, teacher and friend. Theyre the ones in whom players usually confide. During three-plus seasons coaching Redsk

30、ins tight ends, McVay had a good rapport with all players who reported to him. He took pride in working hard and being honest, figuring thats the best way to lead. For that, he earned the players respect.A third-round selection from Florida in the 2013 draft, Reed quickly learned that McVay had his

31、back. Whatever he needed another question answered in the meeting room, extra work after practice or a quick tip on the sideline during games McVay delivered way before Reed ascended to the top of the depth chart.Some assistants attempt to latch onto fast-risers, hoping to advance their careers, and

32、 ignore the players at the bottom of the roster, but “Coach McVay always tries to help everybody,” Reed told me recently. “You know if he says something, he means it.”Reed peppered McVay with questions about every aspect of playing tight end in the NFL, his role in the Redskins offense and what he c

33、ould do to improve. Although Reed began the season as the third-string tight end behind veterans Fred Davis andLogan Paulsen, coaches and players privately raved about the big plays he made in closed practices.It only was a matter of time, many said, before Reed supplanted Davis as the starter. Davi

34、s accelerated the process bycontinuing to be a knucklehead you cant repeatedly fall asleep in meetings and then complain about how youre being used and it became clear Reed was too good to remain on the sideline. When it comes to wood preference for their bats, players know what they like and dont l

35、ike. Some swear by one type of wood. Others use multiple kinds. Their explanations for why maple is better than ash, or yellow birch is better than maple, or whatever their preferences, are rooted in perception, researchers said. In the case of wood, perception isnt reality.PerceptionWhen catcher Jose Lobaton was in Class AAA, someone told him he should use a yellow birch bat because it hardens with each impact. After Lobaton joined the Nationals, fellow catchers Wilson Ramos and Sandy Leon convinced Lobaton to try a maple bat.THANKS !致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考可修改编辑

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁