《初中数学基本知识点.docx》由会员分享,可在线阅读,更多相关《初中数学基本知识点.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 初中数学基本知识点一元二次方程的根本概念 1.一元二次方程3x2+5x-2=0的常数项是-2. 2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0. 平面直角坐标系 在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的.原点。 平面直角坐标系的要素:在同一平面两条数轴相互垂直原点重合 三个规定: 正方向的规定横轴取向右为正方向,纵轴取向上为正方向
2、 单位长度的规定;一般状况,横轴、纵轴单位长度一样;实际有时也可不同,但同一数轴上必需一样。 象限的规定:右上为第一象限、左上为其次象限、左下为第三象限、右下为第四象限。 平面直角坐标系的构成 在同一个平面上相互垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。 点的坐标的性质 建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以
3、在坐标平面内确定它所表示的一个点。 对于平面内任意一点C,过点C分别向轴、轴作垂线,垂足在轴、轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。 一个点在不同的象限或坐标轴上,点的坐标不一样。 因式分解 定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。 要素:结果必需是整式结果必需是积的形式结果是等式 因式分解与整式乘法的关系:m(a+b+c) 因式分解的一般步骤 假如多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式, 通常采纳分组分解法,最终运用十字相乘法分解因式。因此,可以概括为:“一提”、“
4、二套”、“三分组”、“四十字”。 留意:因式分解肯定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应当是指在有理数范围内因式分解,因此分解因式的结果,必需是几个整式的积的形式。 公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 公因式确定方法:系数是整数时取各项最大公约数。一样字母取最低次幂系数最大公约数与一样字母取最低次幂的积就是这个多项式各项的公因式。 提取公因式步骤: 确定公因式。确定商式公因式与商式写成积的形式。 分解因式留意; 不准丢字母 不准丢常数项留意查项数 双重括号化成单括号 结果按数单字母单项式多项式挨次排列 一样因式写成幂的形式 首项负号放括号外 括号内同类项合并。