《初三数学知识点(6篇).doc》由会员分享,可在线阅读,更多相关《初三数学知识点(6篇).doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 初三数学知识点整理(6篇)中考数学学问点 1、反比例函数的概念 一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。 2、反比例函数的图像 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或其次、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永久达不到坐标轴。 3、反比例函数的性质 反比例函数k的符号k0k0时,函数图像的两个分支分别 在第一、三象限。在每个象限内,y 随x 的增大
2、而减小。 x的取值范围是x0, y的取值范围是y0; 当k0抛物线与x轴有两个不同交点. =0抛物线与x轴有的公共点(相切). 0时,抛物线有最低点,函数有最小值. 当a0时,抛物线有点,函数有值. (7)的符号的判定: 表达式,请代值,对应y值定正负; 对称轴,用处多,三种式子相约; 轴两侧判,左同右异中为0; 1的两侧判,左同右异中为0; -1两侧判,左异右同中为0. (8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。 (9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为
3、,在顶点处翻折后的解析式为(a相反,定点坐标不变)。 (10)结论:二次函数(与x轴只有一个交点二次函数的顶点在x轴上=0; 二次函数(的顶点在y轴上二次函数的图象关于y轴对称; 二次函数(经过原点,则。 (11)二次函数的解析式: 一般式:(,用于已知三点。 顶点式:,用于已知顶点坐标或最值或对称轴。 (3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。 初三数学知识点整理2 知识点1。概念 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到。 (2)
4、全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同。 (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关。 知识点2。比例线段 对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段。 知识点3。相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等。 解读:(1)正确理解相似多边形的定义,明确“对应”关系。 (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性。 知识点4。相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角
5、形。 解读:(1)相似三角形是相似多边形中的一种; (2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同; (4)相似用“”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比。 知识点5。相似三角的判定方法 (1)定义:对应角相等,对应边成比例的.两个三角形相似; (2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似。 (3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。 (4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。 (
6、5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似。 (6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似。 知识点6。相似三角形的性质 (1)对应角相等,对应边的比相等; (2)对应高的比,对应中线的比,对应角平分线的比都等于相似比; (3)相似三角形周长之比等于相似比;面积之比等于相似比的平方。 (4)射影定理 初三数学知识点整理3 三角形 分类:按边分; 按角分 1.定义(包括内、外角) 2.三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中
7、, 3.三角形的主要线段 讨论:定义线的交点三角形的心性质 高线中线角平分线中垂线中位线 一般三角形特殊三角形:直角三角形、等腰三角形、等边三角形 4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 一般三角形全等的判定(SAS、ASA、AAS、SSS) 特殊三角形全等的判定:一般方法专用方法 6.三角形的面积 一般计算公式性质:等底等高的三角形面积相等。 7.重要辅助线 中点配中点构成中位线;加倍中线;添加辅助平行线 8.证明方法 直接证法:综合法、分析法 间接证法反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等 证线段倍分关系:加倍法
8、、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来 初三数学知识点整理4 一元一次方程: 在一个方程中,只含有一个未知数,并且未知数的指数是 1、这样的方程叫一元一次方程。 等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤: 去分母,移项,合并同类项,未知数系数化为1。 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二
9、元一次方程的解。 解二元一次方程组的方法:代入消元法/加减消元法。 2、不等式与不等式组 不等式: 用符号”=“号连接的式子叫不等式。 不等式的两边都加上或减去同一个整式,不等号的方向不变。 不等式的两边都乘以或者除以一个正数,不等号方向不变。 不等式的两边都乘以或除以同一个负数,不等号方向相反。 不等式的解集: 能使不等式成立的未知数的值,叫做不等式的解。 一个含有未知数的不等式的所有解,组成这个不等式的解集。 求不等式解集的过程叫做解不等式。 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。 一元一次不等式组: 关于同一个未知数的几个一元一次
10、不等式合在一起,就组成了一元一次不等式组。 一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 求不等式组解集的过程,叫做解不等式组。 3、函数 变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数: 若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。 当B=0时,称Y是X的正比例函数。 一次函数的图象: 把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象
11、。 正比例函数Y=KX的图象是经过原点的一条直线。 在一次函数中,当K0,BO,则经234象限;当K0,B0时,则经124象限;当K0,B0时,则经134象限;当K0,B0时,则经123象限。 当K0时,Y的值随X值的增大而增大,当X0时,Y的值随X值的增大而减少。 空间与图形 图形的认识: 1、点,线,面 点,线,面: 图形是由点,线,面构成的。 面与面相交得线,线与线相交得点。 点动成线,线动成面,面动成体。 展开与折叠: 在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。 N棱柱就是底面图形有N条边的棱
12、柱。 截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧,扇形: 由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。 圆可以分割成若干个扇形。 角 线: 线段有两个端点。 将线段向一个方向无限延长就形成了射线。射线只有一个端点。 将线段的两端无限延长就形成了直线。直线没有端点。 经过两点有且只有一条直线。 比较长短: 两点之间的所有连线中,线段最短。 两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示: 角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点
13、。 一度的1/60是一分,一分的1/60是一秒。 角的比较: 角也可以看成是由一条射线绕着他的端点旋转而成的。 一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行: 同一平面内,不相交的两条直线叫做平行线。 经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第3条直线平行,那么这两条直线互相平行。 垂直: 如果两条直线相交成直角,那么这两条直线互相垂直。 互相垂直的两条直线的交点叫做垂足。 平面内,过一点有且只有一条
14、直线与已知直线垂直。 2、相交线与平行线 角: 如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。 同角或等角的余角/补角相等。 对顶角相等。 同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。 初三数学知识点整理5 重点代数式的有关概念及性质,代数式的运算 内容提要 一、重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫
15、做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如, =x,=x等。 4.系数与指数 区别与联系:从位置上看;从表示的意义上看 5.同类项及其合并 条件:字母相同;相同字母的指数相同 合并依据:乘法分配律 6.根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式
16、叫做无理式。 注意:从外形上判断;区别:、是根式,但不是无理式(是无理数)。 7.算术平方根 正数a的正的平方根(0与平方根的区别); 算术平方根与绝对值 联系:都是非负数,=a 区别:a中,a为一切实数;中,a为非负数。 8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满足条件:被开方数的因数是整数,因式是整式;被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 9.指数 (幂,乘方运算) 0时,a0时,0(n是偶数),0(n是奇数) 零指数:=1(a0) 负整指数:=1/0,p是正整数) 二、运算定律、性质
17、、法则 1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 基本性质:=0) 符号法则: 繁分式:定义;化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:= 技巧: 5.乘法法则:单单多多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (ab)= 7.除法法则:单多单。 8.因式分解:定义;方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。 9.算术根的性质:=0,b0,b0)(正用、逆用) 10.根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:A.B.C. 11.科学记数法:a10,n是整数= 三、
18、应用举例(略) 四、数式综合运算(略) 初三数学知识点整理6 二元一次方程组 1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。 2、二元一次方程组的解法 (1)代入法 由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。 (2)因式分解法 在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。 (3)配方法 将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。 (4)韦达定理法 通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。 (5)消常数项法 当方程组的两个方程都缺一
19、次项时,可用消去常数项的方法解。 解一元二次方程 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。 1、直接开平方法: 用直接开平方法解形如(xm)2=n(n0)的方程,其解为x=m。 直接开平方法就是平方的逆运算。通常用根号表示其运算结果。 2、配方法 通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。 (1)转化:将此一元二次方程化为ax2+bx+c=0的形式(即一元二次方程的一般形式) (2)系数化1:将二次项系数化为1 (3)移项:将常数项移到等号右侧 (4)配方:等号左右两边同时加上一次项系数一半的
20、平方 (5)变形:将等号左边的代数式写成完全平方形式 (6)开方:左右同时开平方 (7)求解:整理即可得到原方程的根 3、公式法 公式法:把一元二次方程化成一般形式,然后计算判别式=b24ac的值,当b24ac0时,把各项系数a,b,c的值代入求根公式x=(b24ac0)就可得到方程的根。 代数式 1、代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 整式和分式统称为有理式。 2、整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3、单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明: 根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。 进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。 4、同类项及其合并 条件:字母相同;相同字母的指数相同 合并依据:乘法分配律。