北师大版八年级上册数学各章节知识点总结(A3排版A4打印,便于记忆).docx

上传人:碎****木 文档编号:82950667 上传时间:2023-03-26 格式:DOCX 页数:27 大小:25.48KB
返回 下载 相关 举报
北师大版八年级上册数学各章节知识点总结(A3排版A4打印,便于记忆).docx_第1页
第1页 / 共27页
北师大版八年级上册数学各章节知识点总结(A3排版A4打印,便于记忆).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《北师大版八年级上册数学各章节知识点总结(A3排版A4打印,便于记忆).docx》由会员分享,可在线阅读,更多相关《北师大版八年级上册数学各章节知识点总结(A3排版A4打印,便于记忆).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 北师大版八年级上册数学各章节知识点总结(A3排版A4打印,便于记忆) 北师大版八年级上册数学各章节学问点总结(A3排版A4打印,便于记忆) 数学学问必需经过自己的加工、制造,才能真正领悟,学以致用! 数学(八年级上册)学问点总结(北师大版) 1勾股定理 1、勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c22、勾股定理的逆定理 假如三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。(3)勾股数:满意a2b2c2的三个正整数,称为勾股数。 2实数 一、实数的概念及分类 1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无

2、限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率,或化简后含有的数,如+8等; 3(3)有特定构造的数,如0.1010010001等; o (4)某些三角函数值,如sin60等二、实数的倒数、相反数和肯定值1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、肯定值 在数轴上,一个数所对应的点与原点的距离

3、,叫做该数的肯定值。(|a|0)。零的肯定值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。3、倒数 假如a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要留意上述规定的三要素缺一不行)。 解题时要真正把握数形结合的思想,理解实数与数轴的点是一一对应的,并能敏捷运用。5、估算 三、平方根、算数平方根和立方根 1、算术平方根:一般地,假如一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特殊地,0的算术平方根是0。 表示方法:记作“a”,读作根号a。

4、 性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2、平方根:一般地,假如一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。 表示方法:正数a的平方根记做“a”,读作“正、负根号a”。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。a0留意a的双重非负性:a0 3、立方根 3 一般地,假如一个数x的立方等于a,即x=a那么这个数x就叫做a的立方根(或三次方根)。 表示方法:记作3a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。留意:3a3a,这说明三

5、次根号内的负号可以移到根号外面。四、实数大小的比拟 1、实数比拟大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,肯定值大的反而小。 2、实数大小比拟的几种常用方法 (1)数轴比拟:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比拟:设a、b是实数, ab0ab,ab0ab,ab0ab (3)求商比拟法:设a、b是两正实数,1ab;baab1ab;ab1ab; (4)肯定值比拟法:设a、b是两负实数,则abab。(5)平方法:设a、b是两负实数,则abab。五、算术平方根有关计算(二次根式) 1、含有二次根号“2、性质: 2(1)

6、(a)a(a0) 22”;被开方数a必需是非负数。 a(a0) (2)a2aa(a0) 第1页共5页数学学问必需经过自己的加工、制造,才能真正领悟,学以致用! (3)abababab(a0,b0)( abab(a0,b0))n(n3)6、设多边形的边数为n,则多边形的对角线共有 (4) (a0,b0)( abab(a0,b0)) 2条。从n边形的一个顶点出 3、运算结果若含有“a”形式,必需满意:(1)被开方数的因数是整数,因式是整 式;(2)被开方数中不含能开得尽方的因数或因式 六、实数的运算 (1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算挨次 先算乘方和开方,再算乘除,最终算加

7、减,假如有括号,就先算括号里面的。(3)运算律 加法交换律abba 加法结合律(ab)ca(bc)乘法交换律abba 乘法结合律(ab)ca(bc)乘法对加法的安排律a(bc)abac 3图形的平移与旋转 一、平移1、定义 在平面内,将一个图形整体沿某方向移动肯定的距离,这样的图形运动称为平移。2、性质 平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。二、旋转1、定义 在平面内,将一个图形绕某肯定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。 2、性质 旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点

8、与旋转中心的连线所成的角等于旋转角。 4四边形性质探究 一、四边形的相关概念1、四边形 在同一平面内,由不在同始终线上的四条线段首尾顺次相接组成的图形叫做四边形。2、四边形具有不稳定性 3、四边形的内角和定理及外角和定理 四边形的内角和定理:四边形的内角和等于360。四边形的外角和定理:四边形的外角和等于360。 推论:多边形的内角和定理:n边形的内角和等于(n2)180;多边形的外角和定理:任意多边形的外角和等于360。 发能引(n-3)条对角线,将n边形分成(n-2)个三角形。二、平行四边形 1、平行四边形的定义 两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质 (1)平行四边

9、形的对边平行且相等。 (2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线相互平分。 (4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:(1)若始终线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。 (2)推论:夹在两条平行线间的平行线段相等。3、平行四边形的判定 (1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线相互平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平

10、行四边形4、两条平行线的距离 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。 平行线间的距离到处相等。5、平行四边形的面积S平行四边形=底边长高=ah三、矩形 1、矩形的定义 有一个角是直角的平行四边形叫做矩形。2、矩形的性质 (1)矩形的对边平行且相等(2)矩形的四个角都是直角 (3)矩形的对角线相等且相互平分 (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。 3、矩形的判定 (1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)

11、定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长宽=ab四、菱形 1、菱形的定义:有一组邻边相等的平行四边形叫做菱形 第2页共5页数学学问必需经过自己的加工、制造,才能真正领悟,学以致用! 2、菱形的性质 (1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等 (3)菱形的对角线相互垂直平分,并且每一条对角线平分一组对角 (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。 3、菱形的判定 (1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形 (3)定理2:对

12、角线相互垂直的平行四边形是菱形4、菱形的面积 S菱形=底边长高=两条对角线乘积的一半五、正方形(310分) 1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。 2、正方形的性质 (1)正方形四条边都相等,对边平行(2)正方形的四个角都是直角 (3)正方形的两条对角线相等,并且相互垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。 3、正方形的判定 判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。4、正方形

13、的面积 设正方形边长为a,对角线长为b,S正方形=a2(三)等腰梯形1、等腰梯形的定义 两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质 (1)等腰梯形的两腰相等,两底平行。 (2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。(3)等腰梯形的对角线相等。 (4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。3、等腰梯形的判定 (1)定义:两腰相等的梯形是等腰梯形 (2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用) (四)梯形的面积 (1)如图,S梯形ABCD12(CDAB)DE (2)梯形中有关图形的面积: SA

14、BDSBAC;SAODSBOC;SADCSBCD 七、有关中点四边形问题的学问点: (1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是菱形;(3)顺次连接菱形的四边中点所得的四边形是矩形; (4)顺次连接等腰梯形的四边中点所得的四边形是菱形; (5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形; (6)顺次连接对角线相互垂直的四边形四边中点所得的四边形是矩形; (7)顺次连接对角线相互垂直且相等的四边形四边中点所得的四边形是正方形;八、中心对称图形1、定义 在平面内,一个图形绕某个点旋转180,假如旋转前后的图形相互重合,那么这个图形

15、叫做中心对称图形,这个点叫做它的对称中心。 2、性质 (1)关于中心对称的两个图形是全等形。 (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。(3)关于中心对称的两个图形,对应线段平行(或在同始终线上)且相等。3、判定 假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 九、四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图: b22 六、梯形 (一)1、梯形的相关概念 一组对边平行而另一组对边不平行的四边形叫做梯形。 梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰

16、。梯形的两底的距离叫做梯形的高。2、梯形的判定 (1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。 (二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形 梯形直角梯形特别梯形 等腰梯形 第3页共5页数学学问必需经过自己的加工、制造,才能真正领悟,学以致用! 5位置确实定 一、在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念1、平面直角坐标系 在平面内,两条相互垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向

17、;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个局部,分别叫做第一象限、其次象限、第三象限、第四象限。 留意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念 对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。 点的坐标用(a,b)表示,其挨次是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ab时,

18、(a,b)和(b,a)是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征 点P(x,y)在第一象限x0,y0 点P(x,y)在其次象限x0,y0点P(x,y)在第三象限x0,y0点P(x,y)在第四象限x0,y0(2)、坐标轴上的点的特征 点P(x,y)在x轴上y0,x为任意实数点P(x,y)在y轴上x0,y为任意实数 点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在其次、

19、四象限夹角平分线上x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标一样。位于平行于y轴的直线上的各点的横坐标一样。(5)、关于x轴、y轴或原点对称的点的坐标的特征 点P与点p关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y) 点P与点p关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y) 点P与点p关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y) (6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到

20、x轴的距离等于y(2)点P(x,y)到y轴的距离等于x (3)点P(x,y)到原点的距离等于三、坐标变化与图形变化的规律: 坐标(x,y)的变化xa或yaxa,yax(-1)或y(-1)x(-1),y(-1)x+a或y+ax+a,y+axy22 图形的变化被横向或纵向拉长(压缩)为原来的a倍放大(缩小)为原来的a倍关于y轴或x轴对称关于原点成中心对称沿x轴或y轴平移a个单位沿x轴平移a个单位,再沿y轴平移a个单6一次函数 一、函数: 一般地,在某一变化过程中有两个变量x与y,假如给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围 使函数

21、有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法及其优缺点 (1)关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图象法 用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应

22、的点 (3)连线:根据自变量由小到大的挨次,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,若两个变量x,y间的关系可以表示成ykxb(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。 特殊地,当一次函数ykxb中的b=0时(即ykx)(k为常数,k0),称y是x的正比例函数。 2、一次函数的图像:全部一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征: 一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。 第4页共5页数学学问必需经过自己的加工、制造,才能

23、真正领悟,学以致用! k的符号b的符号函数图像y0x图像特征b0图像经过一、二、三象限,y随x的增大而增大。k0yb00x图像经过一、二、四象限,y随x的增大而减小K 扩展阅读:北师大版八年级下册数学各章节学问点总结(A3排版A4打印,便于记忆) 数学学问必需经过自己的加工、制造,才能真正领悟,学以致用! 北师大版八年级下册数学学问点总结 第一章一元一次不等式和一元一次不等式组 一.不等关系 1.一般地,用符号“”(或“”)连接的式子叫做不等式.2.要区分方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系. 3.精确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语. 非负

24、数大于等于0(0)0和正数不小于0非正数小于等于0(0)0和负数不大于0二.不等式的根本性质 1.把握不等式的根本性质,并会敏捷运用: (1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 假如ab,那么a+cb+c,a-cb-c. (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 ab假如ab,并且c0,那么acbc,. cc(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向转变,即: ab假如ab,并且cb; 假如a=b,那么a-b等于0;反过来,假如a-b等于0,那么a=b;假如a0;a=ba-b=0;a数学学问必需经过自己的加工、制造,才能真正领

25、悟,学以致用! 其次章分解因式 一.分解因式 1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2.因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区分和联系: (1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二.提公共因式法 1.假如一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将 多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如:abaca(bc)2.概念内涵: (1)因式分解的最终结果应当是“积”;(2)公因式可能是单项式,也可能是多项式; (3)提公因式法的理论依据是乘法对加法的

26、安排律,即:mambmcm(abc)3.易错点点评: (1)留意项的符号与幂指数是否搞错;(2)公因式是否提“洁净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.三.运用公式法 1.假如把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2.主要公式: (1)平方差公式:a2b2(ab)(ab) (2)完全平方公式:a22abb2(ab)2;a22abb2(ab)23.易错点点评: 因式分解要分解究竟.如x4y4(x2y2)(x2y2)就没有分解究竟.4.运用公式法: (1)平方差公式: 应是二项式或视作二项式的多项式; 二项式的每项(不

27、含符号)都是一个单项式(或多项式)的平方;二项是异号.(2)完全平方公式:应是三项式; 其中两项同号,且各为一整式的平方; 还有一项可正负,且它是前两项幂的底数乘积的2倍. 5.因式分解的思路与解题步骤: (1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法; (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来到达分解的目的; (4)因式分解的最终结果必需是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必需进展到每个因式在有理数范围内不能再分解为止. 四.分组分解法: 1.分组分解法:利用分组来分解因式的方法叫做分组分解法.如:amanbmbna(mn

28、)b(mn)(ab)(mn)2.概念内涵: 分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可连续分解,分组后是否可利用公式法连续分解因式.3.留意:分组时要留意符号的变化. 第三章分式 一.分式 1.两个整数不能整除时,消失了分数;类似地,当两个整式不能整除时,就消失了分式. AA整式A除以整式B,可以表示成的形式.假如除式B中含有字母,那么称为 BB分式,对于任意一个分式,分母都不能为零. 整式2.整式和分式统称为有理式,即有:有理式 分式3.进展分数的化简与运算时,常要进展约分和通分,其主要依据是分数的根本性 质: 分式的分子与分母都乘以(或除以)同一个不等于零的整式,

29、分式的值不变. AAMAAM,(M0)BBMBBM4.一个分式的分子、分母有公因式时,可以运用分式的根本性质,把这个分式的 分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二.分式的乘除法 1.分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分 式,把除式的分子、分母颠倒位置后,与被除式相乘. ACACACADAD即:, BDBDBDBCBC2.分式乘方,把分子、分母分别乘方. AnA即:nBBn(n为正整数) nnAnAAnA逆向运用n,当n为整数时,仍旧有n成立. BBBB3.分子与分母没有公因式的分式,叫做最简分式. 三.分式的加减法 第

30、2页共4页数学学问必需经过自己的加工、制造,才能真正领悟,学以致用! 1.分式与分数类似,也可以通分.依据分式的根本性质,把几个异分母的分式分 别化成与原来的分式相等的同分母的分式,叫做分式的通分.2.分式的加减法: 分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相 加减. (1)同分母的分式相加减,分母不变,把分子相加减; ABAB上述法则用式子表示是: CCC(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减; ACADBCADBC上述法则用式子表示是: BDBDBDBD3.概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数

31、的最小公倍数;最简公分母的字母,取各分母全部字母的最高次幂的积,假如分母是多项式,则首先对多项式进展因式分解.四.分式方程 1.解分式方程的一般步骤: 在方程的两边都乘最简公分母,约去分母,化成整式方程;解这个整式方程; 把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必需舍去. 2.列分式方程解应用题的一般步骤: 审清题意;设未知数; 依据题意找相等关系,列出(分式)方程;解方程,并验根;写出答案. 第四章相像图形 一.线段的比 1.假如选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说 Am这两条线段的比AB:CD=m:n,或写成. Bna

32、c2.四条线段a、b、c、d中,假如a与b的比等于c与d的比,即,那么这四 bd条线段a、b、c、d叫做成比例线段,简称比例线段.3.留意点: a:b=k,说明a是b的k倍;由于线段a、b的长度都是正数,所以k是正数; 比与所选线段的长度单位无关,求出时两条线段的长度单位要全都; 除了a=b之外,a:bb:a,比例的根本性质:若二.黄金分割 ba与互为倒数;baacac,则ad=bc;若ad=bc,则bdbdACBC,那么称线段ABABAC1.如图1,点C把线段AB分成两条线段AC和BC,假如 被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比. AC:AB510.618:

33、12_A _图1 _C_B 2.黄金分割点是最美丽、最令人赏心悦目的点. 四.相像多边形 1.一般地,外形一样的图形称为相像图形. 2.对应角相等、对应边成比例的两个多边形叫做相像多边形.相像多边形对应边的比叫做相像比.五.相像三角形 1.在相像多边形中,最为简简洁的就是相像三角形. 2.对应角相等、对应边成比例的三角形叫做相像三角形.相像三角形对应边的比叫做相像比. 3.全等三角形是相像三角的特例,这时相像比等于1.留意:证两个相像三角形, 与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.4.相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比.5.相像三角形周长

34、的比等于相像比. 6.相像三角形面积的比等于相像比的平方.六.探究三角形相像的条件1.相像三角形的判定方法:一般三角形直角三角形根本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交 的直线,所截得的三角形与原三角形相像.两角对应相等;两边对应成比例,且夹角相等;三边对应成比例.一个锐角对应相等;两条边对应成比例:a.两直角边对应成比例;b.斜边和始终角边对应成比例.A_B_C_D_E_F_l_1_l_2_l_3 _图2 第3页共4页数学学问必需经过自己的加工、制造,才能真正领悟,学以致用! 2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. ABBC如图2,l1

35、/l2/l3,则.DEEF3.平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相像. 八.相像的多边形的性质 相像多边形的周长等于相像比;面积比等于相像比的平方.九.图形的放大与缩小 1.假如两个图形不仅是相像图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形;这个点叫做位似中心;这时的相像比又称为位似比. 2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.3.位似变换: 变换后的图形,不仅与原图相像,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特别的相像变换叫做位似变换.这个交点叫做位似中心. 一个图

36、形经过位似变换后得到另一个图形,这两个图形就叫做位似形.利用位似的方法,可以把一个图形放大或缩小. 第五章数据的收集与处理 一.每周干家务活的时间 1.所要考察的对象的全体叫做总体; 把组成总体的每一个考察对象叫做个体; 从总体中取出的一局部个体叫做这个总体的一个样本.2.为一特定目的而对全部考察对象作的全面调查叫做普查; 为一特定目的而对局部考察对象作的调查叫做抽样调查.二.数据的收集 1.抽样调查的特点:调查的范围小、节约时间和人力物力优点.但不如普查得到 的调查结果准确,它得到的只是估量值. 而估量值是否接近实际状况还取决于样本选得是否有代表性. 第六章证明(一) 二.定义与命题 1.一

37、般地,能明确指出概念含义或特征的句子,称为定义. 定义必需是严密的.一般避开使用模糊不清的术语,例如“一些”、“也许”、“差不多”等不能在定义中消失. 2.可以推断它是正确的或是错误的句子叫做命题. 正确的命题称为真命题,错误的命题称为假命题. 3.数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为 推断其他命题真假的原始依据,这样的真命题叫做公理. 4.有些命题可以从公理或其他真命题动身,用规律推理的方法推断它们是正确 的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.5.依据题设、定义以及公理、定理等,经过规律推理,来推断一个命题是否正确, 这样的推理过程

38、叫做证明.三.为什么它们平行 1.平行判定公理:同位角相等,两直线平行.(并由此得到平行的判定定理)2.平行判定定理:同旁内互补,两直线平行.3.平行判定定理:同错角相等,两直线平行.四.假如两条直线平行 1.两条直线平行的性质公理:两直线平行,同位角相等;2.两条直线平行的性质定理:两直线平行,内错角相等;3.两条直线平行的性质定理:两直线平行,同旁内角互补.五.三角形和定理的证明 1.三角形内角和定理:三角形三个内角的和等于1802.一个三角形中至多只有一个直角3.一个三角形中至多只有一个钝角4.一个三角形中至少有两个锐角六.关注三角形的外角 1.三角形内角和定理的两个推论: 推论1:三角形的一个外角等于和它不相邻的两个内角的和;推论2:三角形的一个外角大于任何一个和它不相邻的内角. (注:表示重点局部;表示了解局部;表示仅供参阅局部;) 第4页共4页 友情提示:本文中关于北师大版八年级上册数学各章节学问点总结(A3排版A4打印,便于记忆)给出的范例仅供您参考拓展思维使用,北师大版八年级上册数学各章节学问点总结(A3排版A4打印,便于记忆):该篇文章建议您自主创作。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁