初中数学教案2023年5篇.doc

上传人:碎****木 文档编号:82936957 上传时间:2023-03-26 格式:DOC 页数:25 大小:24.79KB
返回 下载 相关 举报
初中数学教案2023年5篇.doc_第1页
第1页 / 共25页
初中数学教案2023年5篇.doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《初中数学教案2023年5篇.doc》由会员分享,可在线阅读,更多相关《初中数学教案2023年5篇.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 初中数学教案2022年5篇 教学目标: 利用数形结合的数学思想分析问题解决问题。 利用已有二次函数的学问阅历,自主进展探究和合作学习,解决情境中的数学问题,初步形成数学建模力量,解决一些简洁的实际问题。 在探究中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得胜利,树立自信念。 教学重点和难点: 运用数形结合的思想方法进展解二次函数,这是重点也是难点。 教学过程: (一)引入: 分组复习旧知。 探究:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息? 可引导学生从几个方面进展争论: (1)如何画图 (2)顶点、图象与坐标

2、轴的交点 (3)所形成的三角形以及四边形的面积 (4)对称轴 从上面的问题导入今日的课题二次函数中的图象与性质。 (二)新授: 1、再探究:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。 再探究:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。 再探究:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相像。 2、让同学争论:从已知条件如何求二次函数的解析式。 例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SAB

3、C=3,求抛物线的解析式。 (三)提高练习 依据我们学校人人皆知的船模特色工程设计了这样一个情境: 让班级中的上科院小院士来简要介绍学校船模组的状况以及在绘制船模图纸时也常用到抛物线的学问的状况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。 让学生在练习中体会二次函数的图象与性质在解题中的作用。 (四)让学生争论小结 (五)作业布置 1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k5)x(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=8。 (1)求二次函数的解析式; (2)将上述二次函

4、数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。 2、如图,一个二次函数的图象与直线y= x1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。 3、卢浦大桥拱形可以近似看作抛物线的一局部,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DEAB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。 (1)求出图2上以这一局部抛物线为图象的函数解析式,写出函数定义域; (2)假如DE与A

5、B的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果准确到1米) 初中优秀数学教案2023最新篇2 教学内容:在学生初步了解,年月日、季度的概念后,查找历法与扑克之间的关系。 教学目标: 1、通过对扑克好玩的讨论,培育起学生对生活中寻常小事的关注。 2、调动学生丰富的联想,养成一种思索的习惯。 教学重难点:扑克与年月日、季度的联系。 教学过程: 一、谈话引入 师:同学们,这个你们肯定见过吧!这是我们生活中比拟常见的扑克。谁情愿告知我们,你对扑克的了解呢? 生:. (教师补充,引发学生的奇怪心。) 师: 扑克还有一种作用,而且与数学有关! 生:. 二、新课 1、桃、心、梅、

6、方4种花色可以代表一年四季春、夏、秋、冬 2、大王=太阳 小王=月亮 红=白天 黑=夜晚 3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1 4、全部牌的和+小王=平年的天数 全部牌的和+小王+大王=闰年的天数 5、扑克中的K、Q、J共有12张,34=12,表示一年有12个月 6、365752一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。 7、一种花色的和=一个季度的天数 一种花色有13张牌=一个季度有13个星期 三、小结 生活中有许多的数学,他每时每刻都在我们的身边消失,只

7、是我们大家没有留意到。请大家都要学会留心观看,做生活的有心人。 初中优秀数学教案2023最新篇3 教学目标 1.学问与技能 能运用运算律探究去括号法则,并且利用去括号法则将整式化简. 2.过程与方法 经受类比带有括号的有理数的运算,发觉去括号时的符号变化的规律,归纳出去括号法则,培育学生观看、分析、归纳力量. 3.情感态度与价值观 培育学生主动探究、合作沟通的意识,严谨治学的学习态度. 重、难点与关键 1.重点:去括号法则,精确应用法则将整式化简. 2.难点:括号前面是“-”号去括号时,括号内各项变号简单产生错误. 3.关键:精确理解去括号法则. 教具预备 投影仪. 教学过程 一、新授 利用合

8、并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢? 现在我们来看本章引言中的问题(3): 在格尔木到拉萨路段,假如列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为 100t+120(t-0.5)千米 冻土地段与非冻土地段相差 100t-120(t-0.5)千米 上面的式子、都带有括号,它们应如何化简? 思路点拨:教师引导,启发学生类比数的运算,利用安排律.学生练习、沟通后,教师归纳: 利用安排律,可以去括号,合并同类项,得: 100t

9、+120(t-0.5)=100t+120t+120(-0.5)=220t-60 100t-120(t-0.5)=100t-120t-120(-0.5)=-20t+60 我们知道,化简带有括号的整式,首先应先去括号. 上面两式去括号局部变形分别为: +120(t-0.5)=+120t-60 -120(t-0.5)=-120+60 比拟、两式,你能发觉去括号时符号变化的规律吗? 思路点拨:鼓舞学生通过观看,试用自己的语言表达去括号法则,然后教师板书(或用屏幕)展现: 假如括号外的因数是正数,去括号后原括号内各项的符号与原来的符号一样; 假如括号外的因数是负数,去括号后原括号内各项的符号与原来的符号

10、相反. 特殊地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3). 利用安排律,可以将式子中的括号去掉,得: +(x-3)=x-3(括号没了,括号内的每一项都没有变号) -(x-3)=-x+3(括号没了,括号内的每一项都转变了符号) 去括号规律要精确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项. 二、范例学习 例1.化简以下各式: (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b). 思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括

11、号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号. 解答过程按课本,可由学生口述,教师板书. 例2.两船从同一港口同时动身反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时. (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米? 教师操作投影仪,展现例2,学生思索、小组沟通,寻求解答思路. 思路点拨:依据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2

12、(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时动身反向而行,所以两船相距等于甲、乙两船行程之和. 解答过程按课本. 去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用安排律将数字2与括号内的各项相乘,然后再去括号,娴熟后,再省去这一步,直接去括号. 三、稳固练习 1.课本第68页练习1、2题. 2.计算:5xy2-3xy2-(4xy2-2x2y)+2x2y-xy2.5xy2 思路点拨:一般地,先去小括号,再去中括号. 四、课堂小结 去括号是代数式变形中的一种常用方法,去括号时,特殊是括号前面是“-”号时,括号连同括

13、号前面的“-”号去掉,括号里的各项都转变符号.去括号规律可以简洁记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项. 五、作业布置 1.课本第71页习题2.2第2、3、5、8题. 2.选用课时作业设计. 初中优秀数学教案2023最新篇4 学问技能目标 1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质; 2、利用反比例函数的图象解决有关问题。 过程性目标 1、经受对反比例函数图象的观看、分析、争论、概括过程,会说出它的性质; 2、探究反比例函数的图象的性质,体会用数形结合思想解数学问题。 教学过程 一、创设情境

14、上节的练习中,我们画出了问题1中函数的图象,发觉它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来争论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质。 二、探究归纳 1、画出函数的图象。 分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0。 解 1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值: 2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(6,1)、(3,2)、(2,3)等。 3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个

15、分支。这两个分支合起来,就是反比例函数的图象。 上述图象,通常称为双曲线(hyperbola)。 提问这两条曲线会与x轴、y轴相交吗?为什么? 学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步把握画函数图象的步骤)。 学生争论、沟通以下问题,并将争论、沟通的结果回答下列问题。 1、这个函数的图象在哪两个象限?和函数的图象有什么不同? 2、反比例函数(k0)的图象在哪两个象限内?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律? 反比例函数有以下性质: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向

16、右下降,也就是在每个象限内y随x的增加而削减; (2)当k0时,函数的图象在其次、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 注 1、双曲线的两个分支与x轴和y轴没有交点; 2、双曲线的两个分支关于原点成中心对称。 以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义? 在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。 在问题2中反映了在面积肯定的状况下,饲养场的一边越长,另一边越小。 三、实践应用 例1若反比例函数的图象在其次、四象限,求m的值。 分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条

17、件可解出m的值。 解由题意,得解得。 例2已知反比例函数(k0),当x0时,y随x的增大而增大,求一次函数y=kxk的图象经过的象限。 分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kxk中,k0,可知,图象过二、四象限,又k0,所以直线与y轴的交点在x轴的上方。 解由于反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kxk的图象经过一、二、四象限。 例3已知反比例函数的图象过点(1,2)。 (1)求这个函数的解析式,并画出图象; (2)若点A(5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上? 分析(1)反比例函

18、数的图象过点(1,2),即当x=1时,y=2。由待定系数法可求出反比例函数解析式;再依据解析式,通过列表、描点、连线可画出反比例函数的图象; (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。 解(1)设:反比例函数的解析式为:(k0)。 而反比例函数的图象过点(1,2),即当x=1时,y=2。 所以,k=2。 即反比例函数的解析式为:。 (2)点A(5,m)在反比例函数图象上,所以, 点A的坐标为。 点A关于x轴的对称点不在这个图象上; 点A关于y轴的对称点不在这个图象上; 点A关于原点的对称点在这个图象上; 例4已知函数为反比例函数。 (1)

19、求m的值; (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化? (3)当3x时,求此函数的最大值和最小值。 解(1)由反比例函数的定义可知:解得,m=2。 (2)由于20,所以反比例函数的图象在其次、四象限内,在各象限内,y随x的增大而增大。 (3)由于在第个象限内,y随x的增大而增大, 所以当x=时,y最大值=; 当x=3时,y最小值=。 所以当3x时,此函数的最大值为8,最小值为。 例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。 (1)写出用高表示长的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象。 解(1)由于100=5xy

20、,所以。 (2)x0。 (3)图象如下: 说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。 四、沟通反思 本节课学习了画反比例函数的图象和探讨了反比例函数的性质。 1、反比例函数的图象是双曲线(hyperbola)。 2、反比例函数有如下性质: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而削减; (2)当k0时,函数的图象在其次、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。 五、检测反应 1、在同始终角坐标系中画出以下函数的图象: (1);(2)。 2、已知y是x的反比例

21、函数,且当x=3时,y=8,求: (1)y和x的函数关系式; (2)当时,y的值; (3)当x取何值时,? 3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。 4、已知反比例函数经过点A(2,m)和B(n,2n),求: (1)m和n的值; (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x10x2,试比拟y1和y2的大小。 p= 初中优秀数学教案2023最新篇5 教学目标 1.了解代数和的概念,理解有理数加减法可以相互转化,会进展加减混合运算; 2. 通过学习一切加减法运算,都可以统一成加法运算,连续渗透数学的转化思想; 3.通过加法运算练习,培育学生的运算力量。

22、 教学建议 (一)重点、难点分析 本节课的重点是依据运算法则和运算律精确快速地进展有理数的加减混合运算,难点是省略加号与括号的代数和的计算. 由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是由于有理数加、减混合算式都看成和式,就可敏捷运用加法运算律,简化计算. (二)学问构造 (三)教法建议 1.通过习题,复习、稳固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要仔细总结、分析学生在进展有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮忙学生改正.

23、 2.关于“去括号法则”,只要学生了解,并不要求追究所以然. 3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如 -3-4表示-3、-4两数的代数和, -4+3表示-4、+3两数的代数和, 3+4表示3和+4的代数和 等。代数和概念是把握有理数运算的一个重要概念,请教师务必赐予充分留意。 4.先把正数与负数分别相加,可以使运算简便。 5.在交换加数的位置时,要连同前面的符号一起交换。如 12-5+7 应变成 12+7-5,而不能变成12-7+5。 有理数的加减混合运算(一) 一、素养教育目标 (一)学问教学点 1.了解:代数和的概

24、念. 2.理解:有理数加减法可以相互转化. 3.应用:会进展加减混合运算. (二)力量训练点 培育学生的口头表达力量及计算的精确力量. (三)德育渗透点 通过学习一切加减法运算,都可以统一成加法运算,连续渗透数学的转化思想. (四)美育渗透点 学习了本节课就知道一切加减法运算都可以统一成加法运算.表达了数学的统一美. 二、学法引导 1.教学方法:采纳尝试指导法,表达学生主体地位,每一环节,设置肯定题目进展稳固练 习,步步为营,分散难点,解决关键问题. 2.学生写法:练习查找简洁的一般性的方法练习稳固. 三、重点、难点、疑点及解决方法 1.重点:把加减混合运算算式理解为加法算式. 2.难点:把省

25、略括号和的形式直接按有理数加法进展计算. 四、课时安排 1课时 五、教具学具预备 投影仪或电脑、自制胶片. 六、师生互动活动设计 教师提出问题学生练习争论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反应. 七、教学步骤 (一)创设情境,复习引入 师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7. 师:(1)读出这两个算式. (2)“+、-”读作什么?是哪种符号? “+、-”又读作什么?是什么符号? 学生活动:口答教师提出的问题. 师连续提问:(1)这两个题目运算结果是多少? (2)(-11)-7这题你依据什么运算法则计算

26、的? 学生活动:口答以上两题(教师订正). 师小结:减法往往通过转化成加法后来运算. 【教法说明】为了进展有理数的加减混合运算,必需先对有理数加法,特殊是有理数减法的题目进展复习,为进一步学习加减混合运算奠定根底.这里特殊指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的预备工作. 师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今日学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1) 教学说明:由复习的题目奇妙地填“-”号,就变成了今日将学的加减混合运算内容,使学生更形象、更深刻

27、地明白了有理数加减混合运算题目组成. (二)探究新知,讲授新课 1.讲评(-9)+(-6)-(-11)-7. (1)省略括号和的形式 师:看到这个题你想怎样做? 学生活动:自己在练习本上计算. 教师针对学生所做的方法区分优劣. 【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展现自己的时机,这时,有的学生可能是按从左到右的挨次运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算?这样在不同的方法中,学生自己就会查找到简洁的、一般性的方法. 师:我们对此类题目常常采纳先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以

28、省略,即: 原式=(-9)+(+6)+(+11)+(-7) =-9+6+11-7. 提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成? 学生活动:先自己练习尝试用两种读法读,口答(教师订正). 【教法说明】教师依据学生所做的方法,准时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观看力量及口头表达力量. 稳固练习:(出示投影1) 1.把以下算式写成省略括号和的形式,并把结果用两种读法读出来. (1)(+9)-(+10)+(-2)-(-8)+3;

29、 (2)+()-()-(). 2.推断 式子-7+1-5-9的正确读法是(). A.负7、正1、负5、负9; B.减7、加1、减5、减9; C.负7、加1、负5、减9; D.负7、加1、减5、减9; 学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出相互订正,2题抢答. 【教法说明】这两题旨意在稳固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特殊留意了代数和形式的两种读法. 2.用加法运算律计算出结果 师:既然算式能看成几个数的和,我们可以运用加法的运算律进展计算,通常同号两数放在一起分别相加. -9+6+11-7 =-9-7+6+11. 学

30、生活动:按教师要求口答并读出结果. 稳固练习:(出示投影2) 填空: 1.-4+7-4=-_-_+_ 2.+6+9-15+3=_+_+_-_ 3.-9-3+2-4=_9_3_4_2 4._ 学生活动:争论后答复. 【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后订正,又做一组稳固练习,使学生坚固把握运用加法运算律把同号数放在一起时,肯定要连同前面的符号一起交换这一学问点. 师:-9-7+6+11怎样计算? 学生活动:口答 板书 -9-7+6+11 =-16+17 =1 稳固练习:(出示投影3) 1.计算(1)-1+2-3-4+5; (2)

31、. 2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3; (2). 学生活动:四个同学板演,其他同学在练习本上做. 【教法说明】针对一道例题分成三局部,每一局部都有一组相应的稳固练习,这样每一步学生都把握得较坚固,这时教师肯定要总结有理数加减混合运算的方法,使分散的学问有相对的集中. 师小结:有理数加减法混合运算的题目的步骤为: 1.减法转化成加法; 2.省略加号括号; 3.运用加法交换律使同号两数分别相加; 4.按有理数加法法则计算. (三)反应练习 (出示投影4) 计算:(1)12-(-18)+(-7)-15; (2). 学生活动:可采纳同桌相互测验的方法,以到达

32、订正错误的目的. 【教法说明】这两个题目是本节课的重点.采纳测验的方式来到达准时反应. (四)归纳小结 师:1.怎样做加减混合运算题目? 2.省略括号和的形式的两种读法? 学生活动:口答. 【教法说明】小结不是教师单纯的总结,而是让学生参加答复,在学生思索答复的过程中将本节的重点学问纳入学问系统. 八、随堂练习 1.把以下各式写成省略括号的和的形式 (1)(-5)+(+7)-(-3)-(+1); (2)10+(-8)-(+18)-(-5)+(+6). 2.说出式子-3+5-6+1的两种读法. 3.计算 (1)0-10-(-8)+(-2); (2)-4.5+1.8-6.5+3-4; (3). 九、布置作业 (一)必做题:1.计算:(1)-8+12-16-23; (2); (3)-40-28-(-19)+(-24)-(-32); (4)-2.7+(-3.2)-(1.8)-2.2; (二)选做题:(1)当时,哪个最大,哪个最小? (2)当时,哪个最大,哪个最小? 十、板书设计

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁