数24二次函数在闭区间上的最值_于祝.ppt

上传人:s****8 文档编号:82762540 上传时间:2023-03-26 格式:PPT 页数:26 大小:237KB
返回 下载 相关 举报
数24二次函数在闭区间上的最值_于祝.ppt_第1页
第1页 / 共26页
数24二次函数在闭区间上的最值_于祝.ppt_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《数24二次函数在闭区间上的最值_于祝.ppt》由会员分享,可在线阅读,更多相关《数24二次函数在闭区间上的最值_于祝.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 二次函数在闭区间上的最值二次函数在闭区间上的最值石家庄市石家庄市42中学中学于祝于祝 高中数学高中数学例例1、已知函数、已知函数f(x)=x22x 3.(1)若若x 2,0,求函数求函数f(x)的最值;的最值;10 xy2 3例例1、已知函数、已知函数f(x)=x2 2x 3.(1)若若x 2,0,求函数求函数f(x)的最值;的最值;10 xy2 34 1(2)若)若x 2,4,求函数求函数f(x)的最值;的最值;例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若若xx 2 2,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx

2、 2 2,44,求函数求函数f(x)f(x)的最值;的最值;y10 x2 34 1 (3)若)若x ,求求 函数函数f(x)的最值;的最值;例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 32x 3(1 1)若若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,4 4,求函数求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数求函数f(x)f(x)的最值;的最值;10 xy2 34 1 (4 4)若)若xx ,求函数求函数f(x)f(x)的最值的最值;10 xy2 34 1(5 5)若)若 xxtt,t+2t+2时,时

3、,求函数求函数f(x)f(x)的最值的最值.tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求求 函数函数f(x)f(x)的最值;的最值;10 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若若xx22,00,求函数求函数f(x)f(x)的

4、最值;的最值;(2 2)若)若xx 2 2,44,求函数求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.10 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数求函数f(x)f(x)的最值;的最值;(3 3)若

5、)若xx ,求函数求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.10 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求求 函数函数f(x)f(

6、x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.10 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值

7、.评注评注:例例1 1属于属于“轴轴定区间变定区间变”的问题,的问题,看作动区间沿看作动区间沿x x轴移轴移动的过程中,函数最动的过程中,函数最值的变化,即动区间值的变化,即动区间在定轴的左、右两侧在定轴的左、右两侧及包含定轴的变化,及包含定轴的变化,要注意开口方向及端要注意开口方向及端点情况。点情况。10 xy2 3 34 1 tt+2例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(

8、a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 10 xy2 1 10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.10 xy2 1 10

9、 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 1 1,22上的最值上的最值.评注评注:例例2 2属于属于“轴变区间定轴变区间定”的问题,看作的问题,看作对称轴沿对称轴沿x x轴移动的过程中轴移动的过程中,函数最值的变化函数最值的变化,即对称轴在定区间的左、右两侧及对称轴在定即对称轴在定区间的左、右两侧及对称轴在定区间上变化情况区间上变化情况,要注意开口方向及端点情况。要注意开口方向及端点情况。10 xy2 1 10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x

10、0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,10,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,10,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,10,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,

11、1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,10,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,10,1.10 xy2 1 总结总结:求二次函数:求二次函数f(x)=axf(x)=ax2 2+bxbx+c+c在在 m m,nn上上 的最值或值域的一般方法是:的最值或值域的一般方法是:(2 2)当)当x x0 0mm,nn时,时,f(m)f(m)、f(n)f(n)、f(xf(x0 0)中的较大者是最大值中的较大者是最大值,较小者是最小值;较小者是最小值;(1)检查)检查x0=是否属于是否属于 m,n;(3 3)当)当x x0 0 m m,nn时,时,f(m)f(m)、f(n)f(n)中的较大中的较大 者是最大值,较小者是最小值者是最大值,较小者是最小值.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁