勾股定理及其逆定理的综合应用.pptx

上传人:s****8 文档编号:82738453 上传时间:2023-03-26 格式:PPTX 页数:20 大小:1.31MB
返回 下载 相关 举报
勾股定理及其逆定理的综合应用.pptx_第1页
第1页 / 共20页
勾股定理及其逆定理的综合应用.pptx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《勾股定理及其逆定理的综合应用.pptx》由会员分享,可在线阅读,更多相关《勾股定理及其逆定理的综合应用.pptx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第十六章勾股定理及其逆定理的综合应用麻城思源实验学校麻城思源实验学校 董俊峰董俊峰知识知识 梳理梳理如果直角三角形两直角边分别为如果直角三角形两直角边分别为a,b,斜边为斜边为c,那么,那么a2+b2=c2勾股定理勾股定理C AB符号语言:符号语言:在在Rt ABC中中,C=90a2+b2=c2abc勾股定理的逆定理勾股定理的逆定理 如果三角形的三边长如果三角形的三边长a,b,c满足满足a2+b2=c2,那么这个三角形是直角三角形那么这个三角形是直角三角形互逆定理互逆定理 如果一个定理的逆命题经过证明是真命题如果一个定理的逆命题经过证明是真命题,那么它也是一个定理那么它也是一个定理,这两个定理

2、叫做互逆定理这两个定理叫做互逆定理,其中一个叫做另一个的逆定理其中一个叫做另一个的逆定理.CAB符号语言:符号语言:在在 ABC中中,a2+b2=c2ABC是直角三角形,C=90abc思维体操,牛刀小试思维体操,牛刀小试1、在、在RtABC中,中,C=90,(1)若若a=5,b=12,c=_;(2)若若a=15,c=25,则,则b=_;(4)若若a b=3:4,c=10,则,则 SABC=_132024思维体操,牛刀小试思维体操,牛刀小试2.若若ABC中中,A,B,C的对边分别为的对边分别为a、b、c,下列叙述不正确的是(下列叙述不正确的是()A.如果如果C-B=A,则,则ABC是直角三角形是

3、直角三角形B.如果如果C2=b2-a2,那么那么ABC是直角三角形,是直角三角形,且且 C=90C.如果(如果(c+a)(c-a)=b2,那么那么ABC是直角三角形是直角三角形D.如果如果A:B:C=5:2:3,则,则ABC 是直角三角形是直角三角形B思维体操,牛刀小试思维体操,牛刀小试3.已知一个直角三角形的两边长分别已知一个直角三角形的两边长分别为为5和和12,则第三边长是则第三边长是 。4.在在ABC中中,AB=13,AC=15,BC边上的高边上的高AD=12,则,则BC=.14或或4ABCDDABC151312ABC131512以上问以上问题的解题的解决,运决,运用到了用到了什么数什么

4、数学思想学思想?合作交流,领会精髓合作交流,领会精髓【例题】已知:如图,在已知:如图,在RtABCRtABC中,中,C=90C=90,AB=5cmAB=5cm,AC=3cmAC=3cm,动点,动点P P从从点点B B出发沿射线出发沿射线BCBC以以1cm/s1cm/s的速度移动,的速度移动,设运动的时间为设运动的时间为t t秒秒(1 1)求)求BCBC边的长;边的长;(2 2)当)当ABPABP为直角三角形时,求为直角三角形时,求t t的的值;值;(3 3)当)当ABPABP为等腰三角形时,求为等腰三角形时,求t t值值合作交流,领会精髓合作交流,领会精髓例例、已知:如图,在、已知:如图,在R

5、tABCRtABC中,中,C=90C=90,AB=5cmAB=5cm,AC=3cmAC=3cm,动点,动点P P从点从点B B出发沿射线出发沿射线BCBC以以1cm/s1cm/s的速度移动,设运动的时间为的速度移动,设运动的时间为t t秒秒(1 1)求)求BCBC边的长;边的长;(2 2)当)当ABPABP为直角三角形时,求为直角三角形时,求t t的值;的值;(3 3)当)当ABPABP为等腰三角形时,求为等腰三角形时,求t t值值ABC当当APB为直角时,点为直角时,点P与点与点C重合,重合,BP=BC=4cm,即,即t=4;P【规范解答规范解答】合作交流,领会精髓合作交流,领会精髓例例、已

6、知:如图,在、已知:如图,在RtABCRtABC中,中,C=90C=90,AB=5cmAB=5cm,AC=3cmAC=3cm,动点,动点P P从点从点B B出发沿射线出发沿射线BCBC以以1cm/s1cm/s的速度移动,设运动的时间为的速度移动,设运动的时间为t t秒秒(1 1)求)求BCBC边的长;边的长;(2 2)当)当ABPABP为直角三角形时,求为直角三角形时,求t t的值;的值;(3 3)当)当ABPABP为等腰三角形时,求为等腰三角形时,求t t值值ABCBAPP【规范解答规范解答】当堂检测,大显身手:当堂检测,大显身手:A1.1.如图,四边形如图,四边形ABCDABCD中,中,A

7、BAB3,BC=4,CD=12,AD=13,3,BC=4,CD=12,AD=13,B=90B=90,则四边形,则四边形ABCDABCD的的面积是面积是 .2.2.RtRtABCABC中中,BAC=90BAC=90,AB=AC=2,AB=AC=2,以以ACAC为为一一边边,在在ABCABC外外部部作作等等腰腰直直角角三三角角形形ACD,ACD,则则线线段段BDBD的的长长为为 .36363 3、由于过度采伐森林和破坏植被,我国部分地区频频遭、由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭近日,受沙尘暴的侵袭近日,A A城气象局测得沙尘暴中心在城气象局测得沙尘暴中心在A A城的正西方

8、向城的正西方向240km240km的的B B处,以每时处,以每时12km12km的速度向北偏东的速度向北偏东6060方向移动,距沙尘暴中心方向移动,距沙尘暴中心150km150km的范围为受影响区域的范围为受影响区域(1 1)A A城是否受到这次沙尘暴的影响?为什么?城是否受到这次沙尘暴的影响?为什么?(2 2)若)若A A城受这次沙尘暴影响,那么遭受影响的时间有城受这次沙尘暴影响,那么遭受影响的时间有多长?多长?BA A60北北西西东东DEC反思构建,融汇新知:反思构建,融汇新知:通过本节课的学习,你通过本节课的学习,你有什么收获?你还有什么有什么收获?你还有什么困惑?困惑?反思构建,融会贯

9、通:反思构建,融会贯通:通通过过本本节节课课的的学学习习,你你有有什什么么收收获获?你你还还有有什什么么困困惑惑?课后拓展课后拓展,勇攀高峰勇攀高峰:在在ABCABC中,中,BC=aBC=a,AC=bAC=b,AB=cAB=c,设,设c c为最长边,为最长边,当当a a2 2+b+b2 2=c=c2 2时,时,ABCABC是直角三角形;当是直角三角形;当a a2 2+b+b2 2c c2 2时,时,利用代数式利用代数式a a2 2+b+b2 2和和c c2 2的大小关系,探究的大小关系,探究ABCABC的形的形状(按角分类)状(按角分类)(1 1)当)当ABCABC三边分别为三边分别为6 6、

10、8 8、9 9时,时,ABCABC为为_三角形;当三角形;当ABCABC三边分别为三边分别为6 6、8 8、1111时,时,ABCABC为为_三角形三角形(2 2)猜想,当)猜想,当a a2 2+b+b2 2_c_c2 2时,时,ABCABC为锐角三角为锐角三角形;当形;当a a2 2+b+b2 2_c_c2 2时,时,ABCABC为钝角三角形为钝角三角形(3 3)判断当)判断当a=2a=2,b=4b=4时,时,ABCABC的形状,并求出对的形状,并求出对应的应的c c的取值范围的取值范围谢谢大家!谢谢大家!合作交流,领会精髓合作交流,领会精髓例例、已知:如图,在、已知:如图,在RtABCRt

11、ABC中,中,C=90C=90,AB=5cmAB=5cm,AC=3cmAC=3cm,动点,动点P P从点从点B B出发沿射线出发沿射线BCBC以以1cm/s1cm/s的速度移动,设运动的时间为的速度移动,设运动的时间为t t秒秒(1 1)求)求BCBC边的长;边的长;(2 2)当)当ABPABP为直角三角形时,求为直角三角形时,求t t的值;的值;(3 3)当)当ABPABP为等腰三角形时,求为等腰三角形时,求t t值值ABC返回当当BA=BPBA=BP时,时,t=5t=5P合作交流,领会精髓合作交流,领会精髓例例、已知:如图,在、已知:如图,在RtABCRtABC中,中,C=90C=90,A

12、B=5cmAB=5cm,AC=3cmAC=3cm,动点,动点P P从点从点B B出发沿射线出发沿射线BCBC以以1cm/s1cm/s的速度移动,设运动的时间为的速度移动,设运动的时间为t t秒秒(1 1)求)求BCBC边的长;边的长;(2 2)当)当ABPABP为直角三角形时,求为直角三角形时,求t t的值;的值;(3 3)当)当ABPABP为等腰三角形时,求为等腰三角形时,求t t值值ABC返回 当当AB=APAB=AP时,时,BP=2BCBP=2BCBP=8cmBP=8cm t=8t=8P合作交流,领会精髓合作交流,领会精髓例例、已知:如图,在、已知:如图,在RtABCRtABC中,中,C=90C=90,AB=5cmAB=5cm,AC=3cmAC=3cm,动点,动点P P从点从点B B出发沿射线出发沿射线BCBC以以1cm/s1cm/s的速度移动,设运动的时间为的速度移动,设运动的时间为t t秒秒(1 1)求)求BCBC边的长;边的长;(2 2)当)当ABPABP为直角三角形时,求为直角三角形时,求t t的值;的值;(3 3)当)当ABPABP为等腰三角形时,求为等腰三角形时,求t t值值ABC返回P

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁