《122三角形全等判定1.ppt》由会员分享,可在线阅读,更多相关《122三角形全等判定1.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、12.2 12.2 三角形全等的判定三角形全等的判定(一一)BCAEFABCDEF 1、什么叫全等三角形?什么叫全等三角形?能够完全重合的两个三角形叫能够完全重合的两个三角形叫 全等三角形全等三角形。2、已知已知ABC DEF,找出其中相等的边与角,找出其中相等的边与角AB=DE BC=EF CA=FD A=D B=E C=FABCDEFAB=DE CA=FD BC=EF A=D B=E C=F满足这六个条件可以保证满足这六个条件可以保证ABC DEF,如果只满足这些条件中的一部分如果只满足这些条件中的一部分,那么能保证那么能保证ABC DEF吗吗?思考:思考:1.只给一条边时;只给一条边时;
2、661.只给一个条件只给一个条件452.只给一个角时;只给一个角时;45结论结论:只有一条边或一个角对应相等只有一条边或一个角对应相等的的两个三角形不一定全等两个三角形不一定全等.两边;两边;两角。两角。一边一角;一边一角;2.如果满足如果满足两个两个条件,你能说出有条件,你能说出有哪几种可能的情况?哪几种可能的情况?如果三角形的两边分别为如果三角形的两边分别为6 6cmcm,8 8cm cm 时时8cm8cm6cm6cm结论结论:两条边对应相等的两条边对应相等的两个三角形不一定全等两个三角形不一定全等.三角形的一条边为三角形的一条边为6cm,一个内角为一个内角为30时时:6cm6cm3030
3、结论结论:一条边一个角对应相等的一条边一个角对应相等的两个两个三角形不一定全等三角形不一定全等.45304530如果三角形的两个内角分别是如果三角形的两个内角分别是相等相等时时结论结论:两个角对应相等的两个角对应相等的两个三角形不一定全等两个三角形不一定全等.根据三角形的内角和为根据三角形的内角和为180180度,则第三角一定确定,度,则第三角一定确定,所以当三内角对应相等时,两个三角形不一定全等所以当三内角对应相等时,两个三角形不一定全等两个条件两个条件两角;两角;两边;两边;一边一角一边一角。结论:只给出一个或两个结论:只给出一个或两个条件时,都不能保证所画条件时,都不能保证所画的三角形一
4、定全等。的三角形一定全等。一个条件一个条件一角;一角;一边;一边;三角三角;三边;三边;两边一角;两边一角;两角一边。两角一边。3.如果满足如果满足三个三个条件,你能说出有条件,你能说出有哪几种可能的情况?哪几种可能的情况?探索三角形全等的条件探索三角形全等的条件已知两个三角形的三个内角分别为已知两个三角形的三个内角分别为3030,6060 ,9090 它们一定全等吗?它们一定全等吗?这说明有三个角对应相等的两个三角形这说明有三个角对应相等的两个三角形不一定全等不一定全等三个角三个角先先画画出出一一个个ABC,AB=6 cmcm,BC=8 cmcm,AC=9 cmcm再再画画出出一一个个ABC
5、,使使AB=AB,BC=BC,A C=AC.把把画画好好ABC的的剪剪下下,放放到到ABC上,他们全等吗?上,他们全等吗?画法画法:1.画线段画线段 BC=BC;2.分别以分别以 B ,C为圆心为圆心,BA,BC为半径画弧为半径画弧,两两弧交于点弧交于点A;3.连接线段连接线段 AB,AC.已知两个三角形的三条边都分别为已知两个三角形的三条边都分别为6 6cmcm、8 8cmcm、9 9cm cm。它们一定全等吗?。它们一定全等吗?6cm8cm9cm8cm9cm6cm9cm8cm6cm三条边三条边三边对应相等的两个三角形全等。三边对应相等的两个三角形全等。简写为简写为“边边边边边边”或或“SS
6、SSSS”边边边公理:边边边公理:注:注:这个定理说明,只要三角形的这个定理说明,只要三角形的三边的长度确定了,这个三角形的形状三边的长度确定了,这个三角形的形状和大小就完全确定了,这也是三角形具和大小就完全确定了,这也是三角形具有有稳定性稳定性的原理。的原理。证明:在证明:在ABC与与DEF中中ABCDEFAB=DEAC=DFBC=EFABCDEF(SSS)判判断断两两个个三三角角形形全全等等的的推推理理过过程程,叫叫做做证证明明三三角角形形全全等等。准备条件:证全等时要用的条件要先准备条件:证全等时要用的条件要先证好;证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写
7、出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:练习练习:已知:如图,已知:如图,AB=AD,BC=DC,求证求证:ABC ADCABCDACAC ()AB=AD ()BC=DC ()ABC ADC(SSS)证明:在证明:在ABC和和ADC中中=已知已知已知已知 公共边公共边B=DB=D BAC=DACAC是BAD的角平分线的角平分线AC是BAD的角平分线的角平分线ACBD证明:证明:D是是BC的中点的中点BD=CD在在ABD与与ACD中中AB=AC(已知)(已知)BD=CD(已证)(已证)AD=AD(公共边)(公共边)ABDACD(SSS)如图如图,ABC是一个钢架,是一个钢架,AB=AC,AD是连接是连接A与与BC中点中点D的支架,求证:的支架,求证:ABDACD求证:求证:B=CB=C求证:ADBCADB=ADC=90 ADBC作业同步练习P20-21的第 6题、7题注意写清步骤