《高速转子轴的临界转速优秀PPT.ppt》由会员分享,可在线阅读,更多相关《高速转子轴的临界转速优秀PPT.ppt(75页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高速转子轴的临界转速第一页,本课件共有75页概述 一 振动 振动现象 振动的利害临界转速 共振现象 临界转速的提出(高速转子的出现)临界转速常用 或 表示。要搞清系统固有频率,干扰频率和共振概念 固有频率和临界转速的概念。第二页,本课件共有75页单个自由度-一个临界转速多个自由度过-有多个临界转速,以nc1(最低)依次nc2-排列一般转子由于受到材料强度限制,转速在20000转/分以下,故比较多碰到的是轴系的一、二阶临界转速。刚性转子:工作转速低于一阶临界转速;挠性转子:工作转速高于一阶临界转速。根据生产要求,安全,经济,材料强度等多种原因,决定设计成刚性转子还是挠性转子。一般规定:刚性转子:
2、挠性转子:第三页,本课件共有75页 对于一个现代工程设计人员,在设计高速转子时必须会精确计算,测量轴系的固有频率。同时要清楚了解影响临界转速的因素(如刚度(轴跨、支承、轴径)、质量、陀螺效应、臂长效应等)临界转速计算 一 力学模型建立 选取计算方法 离散化分段 确定边界条件和支座情况 轴上附加质量 其他一些因素(如过盈)二常用计算方法自由振动出发:弹性振动解析法强迫振动:影响系数法、能量法,Prohl法第四页,本课件共有75页特征值法:先不考虑回转效应,则轴的临界转速在数值上就等于它的横向振动固有频率 单自由度 不考虑阻尼的情况下,并且轴只考虑刚度,不考虑质量;盘只考虑质量而不考虑刚度单自由度
3、单自由度系统第五页,本课件共有75页单自由度(刚度系数表)第六页,本课件共有75页设方程式的解为:求导,代入,整理后得:刚度系数 :仅在 j点(j=1,2,)产生单位位移而在 i 点(i=1,2)所需力 两个自由度 两 个 自 由 度 系 统第七页,本课件共有75页m1m2k2k1m1m2k2k1m1m2k2k111第八页,本课件共有75页非零解 系数行列式为零由上式求得两个正实根,即二自由度系统的两个固有频率对于多自由度系统,其频率方程为:作用力方程为:两个自由度频率方程第九页,本课件共有75页式中:称为特征矩阵,是一个对称矩阵。特征方程是:或多个自由度第十页,本课件共有75页 上 述特征方
4、程是关于 的N次方程,有N个特征值。在一般情况下,每个质体的运动规律都为多个频率等于各固有频率的简谐振动的组合。当干扰频率与系统某一阶(如第i阶)固有频率一致时,发生共振,并由此可给出对应阶振型或将代入上式,就可以得到对应的主振:第十一页,本课件共有75页由位移方程求解 前面介绍的是运动方程求解,它要计算刚度系数。有些系统中,求刚度系数比较困难,则可以用位方程求解称柔度系数,其含义是:仅在j点作用单位力,而在i点产生的位移.设方程式的解为:两 个 自 由 度 系 统第十二页,本课件共有75页二自由度系统的特征方程多自由度系统的特征方程(令 )位移特征方程第十三页,本课件共有75页写成矩阵方程形
5、式:或为单位矩阵写成矩阵形式的位移方程:多自由度位移特征方程第十四页,本课件共有75页其解:位移特征方程第十五页,本课件共有75页例题11 例题 三转子系统第十六页,本课件共有75页balx根据材力求挠度公式:1点作用单位力,1点产生单位位移又如:可计算第十七页,本课件共有75页 例题第十八页,本课件共有75页 上面表示为固有园频率,若用临界转速表示,则为:例题第十九页,本课件共有75页求振型:令:将代入方程组,得三个主振型:例题 振型图第二十页,本课件共有75页影响系数法 单自由度刚性转子:由图知:影响系数法 刚性轴的回转情况第二十一页,本课件共有75页当e 0时,有运动方程:说明临界转速与
6、偏心量大小无关,而且,即便转子加工精度非常高,在临界转速下工作,振动仍然会很大。挠性转子:质心G跑到了OA之间,OG=y-e影响系数法 挠性转子的回转情况第二十二页,本课件共有75页当:影响系数法y e ,使质心有向旋转中心拉的趋势,这种现象,称谓自动对中。挠度与转速的关系曲线 水平放置的转子第二十三页,本课件共有75页影响系数法具有粘性阻尼的转子轴的振幅和相位第二十四页,本课件共有75页幅、相频图粘性阻尼转子的相频曲线粘性阻尼转子 的幅频曲线第二十五页,本课件共有75页多自由度:影响系数法(二自由度)双自由度转子轴系统双自由度转子轴系统第二十六页,本课件共有75页由克莱姆法则可解方程组令可以
7、解出 ,上式也称频率方程。影响系数法(二自由度)频率方程第二十七页,本课件共有75页令影响系数法(多自由度)第二十八页,本课件共有75页影响系数法第二十九页,本课件共有75页例题2 卧式离心机,电机转子质量 mi=100kg离心机转鼓加物料质量 mg=180kg,转速 1450r/minL=600mm,a=300mm,b=200mm,d=80mm计算转子系统临界转,是否能安全工作?例题 卧式离心机结构示意图卧式离心机结构示意图第三十页,本课件共有75页例题第三十一页,本课件共有75页影响临界转速的其他因素 前面关于临界转速的推导计算都是理想化了的,如把转盘看作质点、怱略支承处的变形等。下面要将
8、对影响临界转速的其他因素作具体分析。(一)回转力矩 当转盘不在中间位置时,如图;此时,转盘既绕自身轴线转动(自转),又绕原轴线(静挠度曲线,公转)转,称之谓进动。进动会产生惯性力矩,称回转力矩或陀螺力矩。由于陀螺力矩的作用,为使挠度曲线变大或变小,这相当于改变了轴的刚度 改变了固有频率。转子的倾斜转子的倾斜第三十二页,本课件共有75页进动有:同步进动 异步进动取转鼓上微小单元dm,它所产生的惯性力在y方向上的分量:注:因惯性力在垂直于xy平面上的分量对称,力矩和为零,故不再讨论。dF对质心的力矩:(习惯上把阻止轴变形的回转力矩作为正值)同步正进动第三十三页,本课件共有75页 由图中几何关系由图
9、中几何关系:回转力矩影响回转力矩影响1 12 23 32 21 1x=x=1+21+2y=(y=(1+2+3)-1-31+2+3)-1-3回转力矩计算图回转力矩计算图第三十四页,本课件共有75页整个转鼓的回转力矩:2134上述积分式中第1,2项是对质心轴 的一次矩,故为0 第3项,对于对称的几何体,积分也为0 第4项:式中 为dm在垂直于 平面的座标轴上的座标值.回转力矩影响第三十五页,本课件共有75页由物理学知:为转子对于园心轴线的转动惯量.为转子对于过质心并垂直于园心轴线的轴(轴)的转动惯量.这是计算回转力矩的通式M0 要减小轴的挠度,相当于K增大,故提高临界转速.M0,则臂长影响会使轴的
10、挠度和转角增加,从而降低了临界转速。d0,则臂长影响会使轴的挠度和转角减小,从而增加了临界转速。弹性支座的影响:弹性支座影响弹性支座的影响 弹性支承外外伸转子 轴系简图轴系简图 凹式转鼓凹式转鼓第三十九页,本课件共有75页弹性支座影响1点作用单位力,仅弹支变形在1点产生的挠度。1点作用单位力,仅弹支变形在1点产生的转角。1点作用单位力矩,仅弹支变形在1点产生的挠度。1点作用单位力矩,仅弹支变形在1点产生的转角。弹性支承轴系总的影响系数为轴的影响系数和弹性支承影响系数二者之和。第四十页,本课件共有75页弹性支座影响碟式分离机挠性支承结构第四十一页,本课件共有75页弹性支座影响第四十二页,本课件共
11、有75页考虑多种影响因数时临界转速的计算综合因素影响考虑回转力矩,外伸,弹支影响第四十三页,本课件共有75页综合因素影响第四十四页,本课件共有75页其他因素影响其他一些影响因数 至此,已分析了对临界转速影响的多种因素,总体有:m,K(轴径、材料、轴跨、轴承位置等),回转力矩(宽、窄转子),臂长,弹性支座。此外,如轴承类型(单列滾珠轴承视为铰支宽轴承视为固支,短滑动轴承视为铰支等),阻尼的影响,油膜的影响等.特别是油膜的影响,滑动轴承靠油膜力支承轴系,因此,不为刚性支承,油膜有弹性,但弹性系数是多少?很难计算和测量,只能估算.有文献报导,计算一阶临界转速时,取油膜刚度系数为8.7*107N/M左
12、右.有时油膜激励力会引起油膜振荡.第四十五页,本课件共有75页计算临界转速近似法和数值法 前面用解析法计算临界转速,当碰高阶方程时,计算比较困难.用以下方法可很方便地得到一个比较复杂转子系统的临界转速近似解,若建模正确,近似解与精确解会很接近.瑞利法(能量法)利用能量守恒 K+T=常数 特殊初始条件下,可求得系统最大动能 和最大势能 则有瑞利法能量法第四十六页,本课件共有75页一个单自由度系统的振动动能最大动能最大势能最大动能=最大势能固有园频率瑞利法能量法第四十七页,本课件共有75页同理,对于多自由度系统动能势能称谓瑞利函数或瑞利商式中 和 是振幅矩阵和其转置矩阵是正定矩阵,是非零向量,故瑞
13、利商的分母不会是0如果能精确知第 i 阶振型值,就可由上式计算得到准确的固有频率值.(注意:振型值与振幅值的概念.)瑞利法能量法第四十八页,本课件共有75页瑞利商性质:系统最低固有频率的平方是瑞利商的最小值;系统最高固有频率的平方是瑞利商的最大值;用瑞利法的关键是假设的振型要正确,假设振型越正确,计算结果的精度就越高.由于假设振型总会与实际振型有区别或误差,故结果总会有偏差.但有一点可以肯定,用瑞利法计算的固有频率总是偏高于实际固有频率,充其量是相等.可根据静挠度曲线作为振型曲线静挠度 可依据材料力学的公式中获得瑞利法能量法第四十九页,本课件共有75页注:固有频率是系统的属性,与g无关。瑞利法
14、能量法 静挠度曲线 基本挠度曲线 外伸转子第五十页,本课件共有75页例:求图示系统的一阶临界转速瑞利法能量法(例)离心机轴系简化模型卧式离心机结构示意图第五十一页,本课件共有75页用解析法计算的结果:二者相比:瑞利法计算结果比解析法偏高0.46%瑞利法能量法(例)第五十二页,本课件共有75页瑞利法能量法(例)用 瑞利法计算高阶固有频率,由于较难得到正确的振型,故计算误差会比较大。如以上图中d作为二阶振型,计算结果的误差(与比解析法)为28%,且偏低。第五十三页,本课件共有75页传递矩阵法 解析法,近似值法计算早固有频率的不足;在1945年,普罗尔(ProhlProhl)就提出用传递矩阵法计算临
15、界转速。但由于当时计算机尚未普及,未能广泛应用。普罗尔法计算临界转速有很多优点:适应性广,功能强、多自度、多跨度,变截面、回转力矩,弹性支承等复杂因素都可以考虑进。传递矩阵法(概述)计算轴系临界转速力学模型 轴系计算示意图轴系计算示意图第五十四页,本课件共有75页把一转轴系统简化成许多集中质量点(分段点多少视计算精度要求和计算机的容量),而这些质点用无质量的轴段联系起来。离散的原则:变截面处;集中质量处;支承处;其他地方适当长度分点;长度变化不要太急剧;截面上用四个状态向量来表示;切力;Q 弯矩:M 转角;挠度:y 记:传递矩阵法第五十五页,本课件共有75页一个轴段上,用传递矩阵式 将该段的左
16、、右截面的四个参数联系起来,即:是一个4*4的矩阵,矩阵中的各元素主要是各段的物理参数 和关于 的函数 为建立传递函数,分二步进行 先看集中质量两边的情况:集中质量右端的状态向量用 表示 集中质量左端的状态向量用 表示 传递矩阵法第五十六页,本课件共有75页传递矩阵法(点矩阵)过集中质量的状态向量计算图写成矩阵形式(称点矩阵,point transfer matrix)考虑回转效应,如质点是园盘则有此项 第五十七页,本课件共有75页轴段:写成矩阵形式(称段或站矩阵,filed transfer matrix)传递矩阵法(段矩阵)轴段的状态向量示意图轴段的状态向量示意图第五十八页,本课件共有75
17、页式中;传递矩阵第五十九页,本课件共有75页过支承轴段的传递矩阵 过支承时,切力有突变,其他三个参数不变(连续)切力的突变,与过集中质量点的切力突变情况一致,只是符号相反(因支反力的方向总是摸度的反方向)在实际中,当第a截面为支承时,常处理成 反支承处的质量向两边离散,这样做的好处:简化计算,只要把第4列中的 以 代入即可。为计算机识别是否过支座提供条件。这列是惯性力引起,可把支承反力引起的切力也写入这一列中过支座传递矩阵第六十页,本课件共有75页过支座传递矩阵支承截面的计算模型第六十一页,本课件共有75页总传递矩阵轴系计算模型第六十二页,本课件共有75页边界条件、余量与数值求解 至此,我们已
18、建立了传递关系式,其中传递矩阵中的各元素是各段的物理参数 和关于 的函数。除 外,其他各参数都可以在分段时给出。我们的目的是要找 ,如何找?有这样的解释:一轴系,若是一个线性系统,当外界输入一个激励力,则输出也是以该频率的振动,若外界无干扰力,则系统要么不动,要么是自由振动,自由振动的频率就是系统的固有有频率。现边界上无外力干扰,故可寻找满足边界条件的自由振动频率。由式;边界条件第六十三页,本课件共有75页始端为自由端的边界条件是:边界条件第六十四页,本课件共有75页终端也是自由端,故有;显然,不会同时为零,只有系数行列式为零 ;方程看似很简单,其实是一个关于 的高次方程,需用计算机一次次地试
19、取 来确定。边界条件第六十五页,本课件共有75页当取不同 时,不一定为0,此值称剩余值或残值 这样,传递矩阵法归结到求一元连续函数 的零点问题 在感兴趣的频率范围内有多个零点,这个零点就是临界转。具体做法是:先给一个初速 计算 然后加适当步长 计算 依次计算搜索,发现异号,说明此频段间有根。求解剩余量曲线第六十六页,本课件共有75页在早期普罗尔的初参数法中,是以 作为剩 余量的。做法是令:由式:得:剩余弯矩剩余弯矩曲线第六十七页,本课件共有75页振型:将计算得到的 代入传递矩阵中计算即可令 ,即可得到各点的相对挠度值,也叫模态振型。振型第六十八页,本课件共有75页参振质量。轴承与基础的等效刚度。整个支座的等效刚度。支座的刚度系数 如图,各向同性的滑动轴承,经简化(怱略阻尼)。图中;参振质量的运动方程为:过弹性支座滑动轴承的简化力学模型 滑动轴承支座的简化力学模型滑动轴承支座的简化力学模型第六十九页,本课件共有75页式中;过弹性支座 滑动轴承的总刚度系数滑动轴承的总刚度系数第七十页,本课件共有75页刚性支承条件 有刚性支承和绞接的情况 过弹性支座第七十一页,本课件共有75页式中:过弹性支座第七十二页,本课件共有75页式中;过弹性支座第七十三页,本课件共有75页式中:过弹性支座第七十四页,本课件共有75页过弹性支座第七十五页,本课件共有75页