《地图投影的基本原理.pptx》由会员分享,可在线阅读,更多相关《地图投影的基本原理.pptx(115页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 1 地地 球球 体体1.1地球的自然表面为了了解地球的形状,让我们由远及近地观察一下地球的自然表面。第1页/共115页浩瀚宇宙之中浩瀚宇宙之中:地球是一个表面光滑、蓝色美丽的地球是一个表面光滑、蓝色美丽的正球正球体体。第2页/共115页机舱窗口俯视大地机舱窗口俯视大地机舱窗口俯视大地机舱窗口俯视大地:地表是一个有些微起伏、极其地表是一个有些微起伏、极其复杂的表复杂的表面面。珠穆朗玛峰与太平洋的马里亚纳海沟之间高差近20km。第3页/共115页事实是:事实是:地球不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。地球的自然表面有高山、丘陵、平原、盆地、
2、湖泊、河流和海洋等高低起伏的形态高低起伏的形态,其中海洋面积约占71%,陆地面积约占29%。浩瀚宇宙之中:地球是一个表面光滑、蓝色美丽的正球体。第4页/共115页1.21.2地球的物理表面地球的物理表面当海洋静止时,自由水面与该面上各点的重力方向(铅垂线)成正交,这个面叫水准面。在众多的水准面中,有一个与静止的平均海水面相重合,并假想其穿过大陆、岛屿形成一个闭合曲面,这就是大地水准面。它实际是一个起伏不平的重力等位面重力等位面地球物理表面。它所包围的形体称为大地体。重力位势(geopotential)相等的面。大地水准面的位势=0。第5页/共115页大地水准面的意义1.地球形体的一级逼近:对地
3、球形状的很好近似,其面上高出与面下缺少的相当。2.起伏波动在制图学中可忽略:对大地测量和地球物理学有研究价值,但在制图业务中,均把地球当作正球体。3.重力等位面:可使用仪器测得海拔高程(某点到大地水准面的高度)。海拔H越高,位势越大。H=位势/g第6页/共115页第7页/共115页1.21.2地球的数学表面地球的数学表面在测量和制图中就用旋转椭球体来代替大地球体,这个旋转椭球体通常称为地球椭球体,简称椭球体。它是一个规则的数学表面,所以人们视其为地球体的数学表面,也是对地球形体的二级逼近,用于测量计算的基准面。第8页/共115页椭球体 三要素:长轴a(赤道半径)、短轴b(极半径)和椭球的扁率f
4、Equatorial AxisPolar AxisNorth PoleSouth PoleEquatorabWGSworldgeodeticsystem84ellipsoid:a=6378137mb=6356752.3mequatorialdiameter=12756.3kmpolardiameter=12713.5kmequatorialcircumference=40075.1kmsurfacearea=510064500km2 a-b 6378137-6356752.3f=a 6378137 1 =298.257 f对 a,b,f的具体测定就是近代大地测量的一项重要工作。WGS-84坐标
5、系坐标系(世界大地坐标系),它是美国国防局为进行GPS导航定位于1984年建立的地心坐标系地心坐标系,1985年投入使用。第9页/共115页第10页/共115页第11页/共115页对地球形状a,b,f测定后,还必须确定大地水准面与椭球体面的相对关系。即确定与局部地区大地水准面符合最好的一个地球椭球体参考参考椭球体,这项工作就是参考椭球体定位。通过数学方法将地球椭球体摆到与大地水准面最贴近的位置上,并求出两者各点间的偏差,从数学上给出对地球形状的三级逼近(参考椭球体)。地球椭球体地球椭球体是是针对针对全球全球而言的,而言的,在经过在经过局部地区局部地区定位后,才称为定位后,才称为参考椭球体参考椭
6、球体第12页/共115页垂线法线地面点P大地水准面、参考椭球面上的点P一级逼近,无法数学表达。二级逼近,可数学表达,但吻合太差。三级逼近后,可使局部地区的椭球面与大地水准面吻合较好。所建立的参考椭球体一般只适用于局部地区。第13页/共115页由于国际上在推求年代、方法及测定的地区不同,故地球椭球体的元素值有很多种。第14页/共115页中国1952年前采用海福特(Hayford)椭球体;19531980年采用克拉索夫斯基椭球体(坐标原点是前苏联玻尔可夫天文台);自1980年开始采用GRS1975(国际大地测量与地球物理学联合会IUGG1975推荐)新新新新参考椭球体系,并确定陕西泾阳县永乐镇北洪
7、流村为“1980西安坐标系”大地坐标的起算点。陕西省泾阳县永乐镇北洪流村为“1980西安坐标系西安坐标系”大地坐标的起算点大地原点。第15页/共115页 地球表面上的定位问题,是与人类的生产活动、科学研究及军事国防等密切相关的重大问题。具体而言,就是球面坐标系统的建立。2 地地球球坐坐标标系系与与大大地地定定位位2.12.1地理坐标地理坐标用经纬度表示地面点位的球面坐标。天文经纬度大地经纬度地心经纬度第16页/共115页天文经纬度:(其严格定义只能在天球上定义)表示地面点在大地水准面大地水准面上的位置,用天文经度和天文纬度表示。2.12.1地理坐标地理坐标天文经度:观测点天顶子午面与格林尼治天
8、顶子午面间的两面角。(天球上)在地球上定义为本初子午面与观测点之间的两面角。天文纬度:在地球上定义为铅垂线铅垂线与赤道平面间的夹角。第17页/共115页大地经纬度:表示地面点在参考椭球面参考椭球面上的位置,用大地经度l、大地纬度和大地高h表示。2.12.1地理坐标地理坐标大地经度l l:指参考椭球面上某点的大地子午面与本初子午面间的两面角。东经为正,西经为负。大地纬度:指参考椭球面上某点的垂直线(法线)与赤道平面的夹角。北纬为正,南纬为负。第18页/共115页地心经纬度:即以地球椭球体质量中心为基点,地心经度同大地经度l,地心纬度是指参考椭球参考椭球面面上某点和椭球中心连线与赤道面之间的夹角y
9、。2.12.1地理坐标地理坐标在大地测量学大地测量学中,常以天文经纬度定义地理坐标。在地图学地图学中,以大地经纬度定义地理坐标。在地理学研究地理学研究及地图学的地图学的小比例尺制图比例尺制图中,通常将椭球体当成正球体看,采用地心经纬度。第19页/共115页地心地心纬度大地纬度天文纬度第20页/共115页2.22.2中国的大地坐标系统中国的大地坐标系统1.中国的大地坐标系 1980年以前:参见电子教案本章第十三页;1980年选用1975年国际大地测量协会推荐的参考 椭球:ICA-75椭球参数a=6378140mb=6356755mf=1/298.257第21页/共115页2.中国的大地控制网平面
10、控制网:按统一规范,由精确测定地理坐标的地面点组成,由三角测量或导线测量完成,依精度不同,分为四等。2.22.2中国的大地坐标系中国的大地坐标系统统 由平面控制网和高程控制网组成,控制点遍布全国各地。第22页/共115页高程控制网:按统一规范,由精确测定高程的地面点组成,以水准测量或三角高程测量完成。依精度不同,分为四等。中国高程起算面是黄海平均海水面。1956年在青岛观象山设立了水准原点,其他各控制点的绝对高程均是据此推算,称为1956年黄海高程系。1987年国家测绘局公布:启用1985国家高程基准取代黄海平均海水面其比黄海平均海水面上升29毫米。青岛观象山水准原点2.22.2中国的大地坐标
11、系统中国的大地坐标系统第23页/共115页绝对高程相对高程国家水准原点 国家测绘局第24页/共115页平面控制网国家测绘局第25页/共115页高程控制网国家测绘局第26页/共115页水准面示意图国家测绘局?第27页/共115页GPS控制网国家测绘局第28页/共115页 2.32.3全球定位系统全球定位系统-GPSGPS授时与测距导航系统/全球定位系统(NavigationSatelliteTimingandRanging/GlobalPositioningSystem-GPS):是以人造卫星为基础的无线电导航系统,可提供高精度、全天候、实时动态定位、定时及导航服务。第29页/共115页1.GP
12、S系统由三个独立的部分系统由三个独立的部分组成组成空间部分空间部分:21颗工作卫星,3颗备用卫星(白色)。它们在高度20200km的近圆形轨道上运行,分布在六个轨道面上,轨道倾角55,两个轨道面之间在经度上相隔60,每个轨道面上布放四颗卫星。卫星在空间的这种配置,保障了在地球上任意地点,任意时刻,至少同时可见到四颗卫星。第30页/共115页 地面支撑系统地面支撑系统:1个主控站,3个注入站,5个监测站。它向GPS导航卫星提供一系列描述卫星运动及其轨道的参数;监控卫星沿着预定轨道运行;保持各颗卫星处于GPS时间系统及监控卫星上各种设备是否正常工作等。第31页/共115页用户设备部分用户设备部分:
13、GPS接收机接收卫星信号,经数据处理得到接收机所在点位的导航和定位信息。通常会显示出用户的位置、速度和时间。还可显示一些附加数据,如到航路点的距离和航向或提供图示。第32页/共115页2.GPS系统定位原系统定位原理理数据,组成3个方程式,就可以解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间(不同步)的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式以求解,从而得到观测点经纬度和高程。通过测量卫星信号到达接收机的时间延迟,即可算出用户到卫星的距离。再根据三维坐标中的距离公式,利用3颗卫星的第33页/共115页AS1(X1,Y1,Z1)BXYZ
14、OPA2+AB2=PB2PB2+SB2=PS2则d2=PS2=PB2+SB2=PA2+AB2+SB2=(X1-X)2+(Y1-Y)2+(Z1-Z)2这里的d为真实几何距离但因卫星时钟与接收机时钟不可能同步,须进行测距的钟差改正改正测得的是伪距,d=d+d=c(光速)t+c(光速)(t tp p(接收机钟差-未知)-ts(卫星钟差-已知)卫星时钟与接收机时钟同步时d=c(光速)tP(X,Y,Z)d2=(X1-X)2+(Y1-Y)2+(Z1-Z)2包含4个未知数余者,类推第34页/共115页第35页/共115页真实几何距离真实几何距离第36页/共115页3.常用常用GPS测量模式测量模式 常规静态
15、测量:采用两台(或两台以上)GPS接收机,分别安置在一条或数条基线的两端,同步观测4颗以上卫星,每时段根据基线长度和测量等级观测45分钟以上的时间。常用于建立全球性或国家级大地控制网、地壳运动监测网。快速静态测量:这种模式是在一个已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移动站接收机依次到各待测测站,每测站观测数分钟。这种模式常用于控制网的建立及其加密、工程测量、地籍测量等。这种方法要求在观测时段内确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km。静态测量模式第37页/共115页准动态测量在一已知测站上安置一台GPS接收机作为基准站,连续跟踪所有可见卫星。移
16、动站接收机在进行初始化后依次到各待测测站,每测站观测几个历元数据。这种方法不同于快速静态,除观测时间不一样外,它要求移动站在搬站过程中不能失锁,并且需要先在已知点或用其它方式进行初始化(采用有OTF功能的软件处理时例外)。这种模式可用于开阔地区的加密控制测量、工程定位及碎部测量、剖面测量及线路测量等。要求在观测时段内确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km。动态测量模式第38页/共115页实时动态测量:DGPS和RTK在一个已知测站上架设GPS基准站接收机和数据链,连续跟踪所有可见卫星,并通过数据链向移动站发送数据。移动站接收机通过移动站数据链接收基准站发射来的数据,并在
17、机进行处理,从而实时得到移动站的高精度位置。DGPS通常叫做实时差分测量,精度为亚米级到米级,这种方式是基准站将基准站上测量得到的RTCM数据通过数据链传输到移动站,移动站接收到RTCM数据后,自动进行解算,得到经差分改正以后的坐标。RTK则是以载波相位观测量为根据的实时差分GPS测量,它是GPS测量技术发展中的一个新突破。它的工作思路与DGPS相似,只不过是基准站将观测数据发送到移动站(而不是发射RTCM数据),移动站接收机再采用更先进的在机处理方法进行处理,从而得到精度比DGPS高得多的实时测量结果。这种方法的精度一般为2cm左右。第39页/共115页3.1地图投影的意义地球椭球体表面是不
18、可展曲面,要将曲面上的客观事物表示在有限的平面图纸上,必须经过由曲面到平面的转换。地图投影:在地球椭球面和平面之间建立点与点之间函数关系的数学方法,称为地图投影。地图投影的实质:是将地球椭球面上的经纬线网按照一定的数学法则转移到平面上。3 地地 图图 投投 影影第40页/共115页第41页/共115页第42页/共115页投影变形经纬网模型演示实验投影变形经纬网模型演示实验 1)步骤:A.半球经纬网模型;B.极点上置投影平面;C.同一经线上置等大正园(微分园);D.点光源球心照射。2)结果:比较投影面上与微分园A.椭圆长短轴微分园直径长度比与长度变形;B.椭圆形状微分园形状角度;最大角度变形。C
19、.椭圆面积微分园面积面积比与面积变形。第43页/共115页3.23.2地图的比例尺地图的比例尺1.地图比例尺的含义地图比例尺:地图上一直线段长度与地面相应直线水平投影长度之比。可表达为(d为图上距离,D为实地距离)根据地图投影变形情况,地图比例尺分为:主比例尺:在投影面上没有变形的点或线上的比例尺。局部比例尺:在投影面上有变形处的比例尺。第44页/共115页2.地图比例尺的表示数字式比例尺如1:10000 文字式比例尺如百万分之一图解式比例尺直线比例尺斜分比例尺复式比例尺特殊比例尺变比例尺无级别比例尺第45页/共115页3.3 地图投影变地图投影变形形1.投影变形的概念把地图上和地球仪上的经纬
20、线网进行比较,可以发现变形表现在长度、面积和角度三个方面。第46页/共115页2.变形椭圆 取地面上一个微分圆(小到可忽略地球曲面取地面上一个微分圆(小到可忽略地球曲面的影响,把它当作平面看待),它投影到平面上的影响,把它当作平面看待),它投影到平面上通常会变为椭圆,通过对这个椭圆的研究,分析通常会变为椭圆,通过对这个椭圆的研究,分析地图投影的变形状况。这种图解方法就叫地图投影的变形状况。这种图解方法就叫变形椭变形椭圆圆。为经线长度比;为纬线长度比第47页/共115页微小圆变形椭圆该方程证明:地球面上的微小圆,投影后通常会变为椭圆,即:以O为原点,以相交成q角的两共轭直径为坐标轴的椭圆方程式。
21、代入:X2+Y2=1,得得第48页/共115页特别方向:特别方向:变形椭圆上相互垂直的两个方向及经向和纬向长轴方向(极大值)a短轴方向(极小值)b经线方向m;纬线方向n统称统称 主方向主方向据阿波隆尼定理阿波隆尼定理,有m2+n2=a2+b2mnsinq=ab第49页/共115页3.投影变形的性质和大小 长度比长度比和长度变形长度变形:投影面上一微小线段(变形椭圆半径)和球面上相应微小线段(球面上微小圆半径,已按规定的比例缩小)之比。m表示长度比长度比,Vm表示长度变形长度变形 长度比是变量,随位置和方向的变化而变化。=0不变0变大0变大0变小第51页/共115页角度变形角度变形:投影面上任意
22、两方向线所夹之角与球面上相应的两方向线夹角之差,称为角度变形。以表示角度最大变形。设A点的坐标为(x、y),A点的坐标为(x、y),则第52页/共115页将上式两边各减和加tana 即:将两式相除,得:第53页/共115页 显然当(a+a )=90时,右端取最大值,则最大方向变形:以w表示角度最大变形:若已知m,n,q,则:第54页/共115页3.4 地图投影方地图投影方法法1.几何投影法 地图投影最初建立在透视的几何原理上,它是把椭球面直接透视到平面上,或透视到可展开的曲面上,如平面、圆柱面和圆锥面。第55页/共115页2.数学解析法以正轴圆锥投影为例经线经线 投影为放射直线,经差l 与投影
23、面上d成正比:d=cl(c为圆锥系数,0c 1)。纬线纬线 投影为同心圆弧,其半径r 是纬度 的函数,r=f()。圆锥投影的一般公式为:X=r s-r cos r=f()Y=r sind d=cl第56页/共115页等角投影条件:=0,m=n,构成经移项、积分、整理得:第57页/共115页第58页/共115页3.5 地图投影分地图投影分类类1.按地图投影的构成方法分类 (1)几何投影几何投影:将椭球面上的经纬线网投影到几何面上,然后将几何面展为平面。方位投影:以平面作投影面,使平面与球面相切或相割,将球面上的经纬线投影到平面上而成。圆柱投影:以圆柱面作投影面,使圆柱面与球面相切或相割,将球面上
24、的经纬线投影到圆柱面上,然后将圆柱面展为平面而成。圆锥投影:以圆锥面作投影面,使圆锥面与球面相切或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面展为平面而成。第59页/共115页第60页/共115页第61页/共115页第62页/共115页第63页/共115页第64页/共115页第65页/共115页 (2)非几非几何投影何投影:根据某些条件,用数学解析法确定球面与平面之间点与点的函数关系。伪方位投影:在方位投影的基础上,根据某些条件改变经线形状而成,除中央经线为直线外,其余均投影为对称中央经线的曲线。伪圆柱投影:在圆柱投影基础上,根据某些条件改变经线形状而成,无等角投影。除中央经线为直线外,
25、其余均投影为对称中央经线的曲线。伪圆锥投影:在圆锥投影基础上,根据某些条件改变经线形状而成,无等角投影。除中央经线为直线外,其余均投影为对称中央经线的曲线。多圆锥投影:设想有更多的圆锥面与球面相切,投影后沿一母线剪开展平。纬线投影为同轴圆弧,其圆心都在中央经线的延长线上。中央经线为直线,其余经线投影为对称于中央经线的曲线。第66页/共115页第67页/共115页2.按地图投影的变形性质分类等角投影等角投影:投影面上某点的任意两方向线夹角与椭球面上相应两线段夹角相等,即角度变形为零=0(或a=b,m=n)。等积投影等积投影:投影面与椭球面上相应区域的面积相等,即面积变形为零Vp=0(或 P=1,
26、a=1/b)。任意投影任意投影:投影图上,长度、面积和角度都有变形,它既不等角又不等积。其中,等距投影是在特定方向上没有长度变形的任意投影(m=1)。关系:等积、等角不能互相保证;等角时面积变形大,等积时角度变形大;等距时,面积和角度都有变形第68页/共115页第69页/共115页第70页/共115页我国的各种地图投影全国:斜轴等面积方位投影、斜轴等角方位投影、正轴等面积割园锥投影、正轴等角割园锥投影等省区:正轴等面积割园锥投影、正轴等角割园锥投影、正轴等角圆柱投影、高斯克吕格投影(宽带)大比例尺:高斯克吕格投影第71页/共115页3.6 地图投影变地图投影变换换1.传统地图的投影变换格网转绘
27、法蓝图嵌贴法第72页/共115页2.数字地图的投影变换投影变换的一般公式X=f1(x,y)Y=f2(x,y)x=f1(,l)X=1(,l)y=f2(,l)Y=2(,l)=(x,y)l=l(x,y)X=1(x,y),l(x,y)Y=2(x,y),l(x,y)定域内单值、连续A投影B投影反解代入B第73页/共115页如不知地图的投影系统,可通过多项式实施变换:X=a00+a10 x+a20 x2+a01y+a11xy+a02y2+a30 x3+a21x2y+a12xy2+a03y3+Y=b00+b10 x+b20 x2+b01y+b11xy+b02y2+b30 x3+b21x2y+b12xy2+b
28、03y3+系数aij,bij可用多个已知坐标点求出。第74页/共115页根据投影方程进行变换的实例等角圆柱投影等角圆锥投影x=rklnU,y=rklyU=e n,l=rkx(n=)rkr =K/U2X=r s-r cosd =alY=r sindK为积分常数,a为圆锥系数第75页/共115页根据投影方程进行变换的实例等距圆柱投影等距圆锥投影x=s,y=rkl yl=rkyX=r s-(C-s)cos(a)rkyY=(C-s)sin(a)rkr =C-sX=r s-r cosdd =a lY=r sindC为积分常数,s为纬度的经线弧长第76页/共115页4 地地图图投投影影的的应应用用4.14
29、.1地图投影的选择依据地图投影的选择依据1.制图区域的范围、形状和地理位置2.制图比例尺3.地图的内容4.出版方式第77页/共115页1.制图区域的范围、形状和地理位置4.14.1地图投影的选择依据地图投影的选择依据制图区域的地理位置决定投影种类制图区域的形状直接制约投影选择制图区域的范围大小影响投影选择第78页/共115页2.制图比例尺 不同比例尺地图对精度要求不同,投影亦不同。大比例尺地形图,对精度要求高,宜采用变形小的投影,如分带投影。中、小比例尺地图范围大,概括程度高,定位精度低,可有等角、等积、任意投影的多种选择。4.14.1地图投影的选择依据地图投影的选择依据第79页/共115页3
30、.地图的内容主题和内容不同,对投影的要求也不同。要求方向正确,应选择等角投影要求面积对比正确,应选择等积投影教学或一般参考图,要求各方面变形都不大,则应选择任意投影4.14.1地图投影的选择依据地图投影的选择依据第80页/共115页4.出版方式单幅图系列图地图集4.14.1地图投影的选择依据地图投影的选择依据第81页/共115页 4.2地形图投影 1.高斯高斯-克吕格投影克吕格投影(等角横切椭圆柱投影等角横切椭圆柱投影)以椭圆柱为投影面,使地球椭球体的某一经线与椭圆柱相切,然后按等角条件,将中央经线两侧各一定范围内的地区投影到椭圆柱面上,再将其展成平面而得。由德国数学家、天文学家高斯(C.F.
31、Gauss,17771855)及大地测量学家克吕格(J.Krger,18571923)共同创建。第82页/共115页此投影无角度变形,中央经线无长度变形。为保证精度,采用分带投影方法:经差6或3分带,长度变形0.14%第83页/共115页第84页/共115页 中国国家基本比例尺地形图采用高斯中国国家基本比例尺地形图采用高斯-克克吕格吕格6分带投影:分带投影:11万(万(3分带)分带)12.5万、万、15万、万、110万、万、125万、万、150万。万。第85页/共115页高斯高斯高斯高斯-克吕格直角坐标克吕格直角坐标克吕格直角坐标克吕格直角坐标yA=245863.7myB=-168474.8m
32、yA通=20745863.7myB通=20331525.2m第86页/共115页2.2.通用横轴墨卡托投影通用横轴墨卡托投影UTMUTM投影投影以横轴椭圆柱面割于地球椭球体的两条等高圈,按等角条件,将中央经线两侧各一定范围内的地区投影到椭圆柱面上,再将其展成平面而得。又称UniversalTransverseMercatorUTM投影。此投影无角度变形,中央经线长度比为0.9996,距中央经线约180km处的两条割线上无变形。亦采用分带投影方法:经差6或3分带。长度变形1任意投影适于南北方向延伸地区地图第97页/共115页普通多圆锥分带投影图将整个地球按一定经差分为若干带,每带中央经线投影为直
33、线,各带在赤道相接。用于制作地球仪。第98页/共115页等差分纬线多圆锥投影 中国地图出版社1963年设计,其经线间隔随距中央经线距离的增大而呈等差递减,属任意投影。第99页/共115页正切差分纬线多圆锥投影中国地图出版社1976年设计,其经线间隔按与中央经线经差的正切函数递减。属任意投影。第100页/共115页世界图第101页/共115页2.2.圆柱投影圆柱投影设想以圆柱面为投影面,使圆柱面与地球表面相切或相割,将地球表面上的经纬线投影到圆柱面上,再把圆柱面沿一条母线剪开展为平面而成。4.4 4.4 世界地图投世界地图投世界地图投世界地图投影影影影第102页/共115页2.圆柱投影 正轴等角
34、圆柱投影由荷兰地图学家墨卡托(MercatorGerardus,15121594)于1569年所创设,故又名墨卡托投影。特点特点:不仅保持了方向和相对位置的正确,而且使等角航线在图上表现为直线。这一特性对航海具有重要的实用价值。4.4 4.4 世界地图投世界地图投世界地图投世界地图投影影影影第103页/共115页墨卡托投影等角航线:是地球表面上与经线相交成相同角度的曲线。在地球表面上除经线和纬线以外的等角航线,都是以极点为渐近点的螺旋曲线。等角航线在图上表现为直线。这一特性对航海具有很重要的意义。大圆航线:地球面上两点间最短距离是通过两点间的大圆弧,也称为大圆航线。4.4 4.4 世界地图投世
35、界地图投世界地图投世界地图投影影影影第104页/共115页墨卡托投影等角航线在图上表现为直线。这一特性对航海具有很重要的意义。地球面上两点间最短距离是通过两点间的大圆弧,也 称为大圆航线4.4 4.4 世界地图投世界地图投世界地图投世界地图投影影影影第105页/共115页第106页/共115页3.伪圆柱投影是在圆柱投影的基础上,规定纬线仍然为平行直线,而经线则根据某些特定条件改变经线形状而设计成对称于中央经线的各类曲线的非几何投影,在具体应用中以等积性质居多,而无等角投影。桑逊(Sanson)投影摩尔威特(Mollweide)投影古德(Goode)投影常用的投影方案:4.4 4.4 世界地图投
36、世界地图投世界地图投世界地图投影影影影第107页/共115页桑逊(Sanson-Flamsteed)投影经线为正弦曲线的等积伪圆柱投影,纬线为间隔相等的平行直线,每条纬线上经线间隔相等。由法国桑逊于1650年设计。投影特点:P=1无面积变形n=1纬线长度比为1m0=1中央经线长度比=1m1经线长度比14.4 4.4 世界地图投世界地图投世界地图投世界地图投影影影影第108页/共115页摩尔威特(Mollweide)投影经线为正弦曲线的等积伪圆柱投影,纬线为间隔相等的平行直线,每条纬线上经线间隔相等。由德国摩尔威特于1805年设计。投影特点:P=1无面积变形S90=Searth/2赤道长度=中央
37、经线2常用于编制世界地图及东、西半球地图S90=Searth/2404411.84.4 4.4 世界地图投世界地图投世界地图投世界地图投影影影影第109页/共115页古德(Goode)投影美地理学家古德(J.PaulGoode)于1923年提出在整个制图区域主要部分中央都设置一条中央经线,分别进行投影,则全图就分成几瓣,各瓣沿赤道连接在一起。投影特点:分瓣、组合投影,变形减小且均匀大陆完整,大洋割裂大洋完整,大陆割裂常用于编制世界地图4.4 4.4 世界地图投世界地图投世界地图投世界地图投影影影影第110页/共115页摩尔威特古德投影4.4 4.4 世界地图投世界地图投世界地图投世界地图投影影影影第111页/共115页第2章结束第112页/共115页阿波隆尼定理(Apollonius):椭圆内两共轭半径的平方和等于其长短半径的平方和;两个共轭半径与它们的交角正弦的乘积等于其长短半径的乘积。KKLOabmn有:m2+n2=a2+b2mnsinq=ab椭圆内任一条直径d的平行弦中点在椭圆内的轨迹形成另一直径d ,则d 称为d的共轭直径。返回第113页/共115页斜分比例尺也称微分比例尺,是依据相似三角形原理制成的图解比例尺。使量测精度达到三位数(10-3)。第114页/共115页新编地图学教程第2章地图的数学基础感谢您的观看!第115页/共115页