《实践与探索20131217学习.pptx》由会员分享,可在线阅读,更多相关《实践与探索20131217学习.pptx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第1页/共28页第2页/共28页 复习待定系数法求二次函数关系式几种方法 已知3个点坐标设一般式:设顶点式:已知顶点坐标,和另一个点坐标已知与X轴的两个交点坐标,和另一个点的坐标设交点式:y=a(XX1)(X X2)第3页/共28页例1:如图2731,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个高125m的柱子OA,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度225m 若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?第4页/共28页解:以O为原点,OA为y轴建立坐标系设抛物线顶点为B,水
2、流落水与x轴交点为C(如图)由题意得,A(0,1.25),B(1,2.25),因此,设抛物线为将A(0,1.25)代入上式,得,解得 所以,抛物线的函数关系式为当y=0时,解得 x=-0.5(不合题意,舍去),x=2.5,所以C(2.5,0),即水池的半径至少要2.5m第5页/共28页例2某涵洞是抛物线形,它的截面如图所示,现测得水面宽16m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?第6页/共28页分析:如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可
3、设它的函数关系式是 此时只需抛物线上的一个点就能求出抛物线的函数关系式AB第7页/共28页解:如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系。由题意,得点B的坐标为(0.8,-2.4),又因为点B在抛物线上,将它的坐标代入 ,得所以 因此,函数关系式是BA第8页/共28页变式2一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB1.6 m时,涵洞顶点与水面的距离为2.4 m这时,离开水面1.5 m处,涵洞宽ED是多少?是否会超过1 m?第9页/共28页 2.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9 m,与篮筐中心C的水平距离是7m,
4、当球运行的水平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m.问此球能否投中?此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?第10页/共28页一场篮球赛中,小明跳起投篮,已知球出手时离地面高 米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。问此球能否投中?3米8米4米4米第11页/共28页一个运动员推铅球,铅球出手点在A处,出手时球离地面,铅球运行所经过的路线是抛物线,已知铅球在运动员前4处达到最高点,最高点高为3,你能算出该运动员的成绩吗?4
5、米3米第12页/共28页x x x0 00y y y h h h A BA BA B练习第13页/共28页解一解二解三探究3 图中是抛物线形拱桥,当水面在 L 时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?继续第14页/共28页解一如图所示,以抛物线的顶点为原点,以抛物线的对称轴为 轴,建立平面直角坐标系。可设这条抛物线所表示的二次函数的解析式为:当拱桥离水面2m时,水面宽4m即抛物线过点(2,-2)这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-3,这时有:当水面下降1m时,水面宽度增加了返回第15页/共28页解二如图所示,以抛物线和水面的两个交点的
6、连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m即:抛物线过点(2,0)这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:当水面下降1m时,水面宽度增加了可设这条抛物线所表示的二次函数的解析式为:此时,抛物线的顶点为(0,2)返回第16页/共28页解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.可设这条抛物线所表示的二次函数的解析式为:抛物线过点(0,0)这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:当水面下降1m时,水面宽度增加
7、了此时,抛物线的顶点为(2,2)这时水面的宽度为:返回第17页/共28页 例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.第18页/共28页解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.AB=4A(-2,0)B(2,0)OC=4.4C(0,4.4)设抛物线所表示的二次函数为抛物线过A(-2,0)抛物线所表示的二次函数为汽车能顺利经过大门.第19页/共28页 1.有一辆
8、载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿底部宽AB为4m,高OC为3.2m;集装箱的宽与车的宽相同都是2.4m;集装箱顶部离地面2.1m。该车能通过隧道吗?请说明理由.练习第20页/共28页练习:有一抛物线拱桥,已知水位在AB位置时,水面的宽度是 m,水位上升4 m就达到警戒线CD,这时水面宽是 米若洪水到来时,水位以每小时0.5 m速度上升,求水过警戒线后几小时淹到拱桥顶端M处xy第21页/共28页5.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线 (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC3.4
9、米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由。的一部分,如图第22页/共28页解(1)=函数的最大值是 答:演员弹跳的最大高度是米(2)当x4时,3.4BC,所以这次表演成功。第23页/共28页如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用 表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?(1)卡车可以通过.提示:当x=1时,y=3.75,3.7524.(2)卡车可以通过.提示:当x=2时,y=3,324.13131313O第24页/共28页作业课本:p23页
10、 复习巩固 第1题 拓展探索 第6题选做题:如图,一位篮球运动员跳起投篮,球沿抛物线 yx23.5运行,然后准确落人篮框内。已知篮框的 中心离地面的距离为3.05米。(1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?第25页/共28页yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0 1 2 3 4 5 6 7 8 9第26页/共28页yX(8,3)(5,4)(4,4)0 1 2 3 4 5 6 7 8 9在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?(,)第27页/共28页感谢您的观看。第28页/共28页