实数总复习课件.pptx

上传人:一*** 文档编号:82679102 上传时间:2023-03-26 格式:PPTX 页数:47 大小:587.10KB
返回 下载 相关 举报
实数总复习课件.pptx_第1页
第1页 / 共47页
实数总复习课件.pptx_第2页
第2页 / 共47页
点击查看更多>>
资源描述

《实数总复习课件.pptx》由会员分享,可在线阅读,更多相关《实数总复习课件.pptx(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、实数总复习课件实数总复习课件PPT复习回复习回顾顾1、概念、分类、概念、分类2、绝对值、相反数、倒数、负倒数、绝对值、相反数、倒数、负倒数3、扩大、缩小的变化规律、扩大、缩小的变化规律4、比较大小比较大小5、计算、计算6、解方程、解方程7、明确表示一个数的小数部分和整数部分、明确表示一个数的小数部分和整数部分8、式子有意义的条件、式子有意义的条件第1页/共46页一、概念一、概念算术平方根,平方根,算术平方根,平方根,算术平方根,平方根,算术平方根,平方根,被开方数,根指数,被开方数,根指数,被开方数,根指数,被开方数,根指数,开平方,开立方,开平方,开立方,开平方,开立方,开平方,开立方,无理

2、数,实数无理数,实数无理数,实数无理数,实数第2页/共46页乘方乘方开方开方平方根平方根立方根立方根实数实数有理数有理数无理无理数数互为逆运算互为逆运算开平方开平方开立方开立方第3页/共46页定义定义一般地,如果一个正数一般地,如果一个正数一般地,如果一个正数一般地,如果一个正数 x x 的平方等于的平方等于的平方等于的平方等于 a a(x x2 2=a a),那么这个正数),那么这个正数),那么这个正数),那么这个正数 x x 就叫做就叫做就叫做就叫做 a a 的的的的算术平方根算术平方根算术平方根算术平方根a a 的算术平方根记作的算术平方根记作的算术平方根记作的算术平方根记作读作读作读作

3、读作“根号根号根号根号a a”根根根根号号号号被开方数被开方数被开方数被开方数规定:规定:规定:规定:0 0的算术平方根等于的算术平方根等于的算术平方根等于的算术平方根等于0 0如如如如10102 2=100=100则则则则100100的算术平方根的算术平方根的算术平方根的算术平方根第4页/共46页 如果一个数如果一个数X X的平方等于的平方等于a a,即,即X X2 2=a=a,那么这个数,那么这个数X X叫做叫做a a的平方根的平方根(二次方根)(二次方根)a a的平方根的平方根表示为表示为x2=a求一个数求一个数a的平方根的运算叫做开平方的平方根的运算叫做开平方平方根的定义平方根的定义第

4、5页/共46页平方根的性质:平方根的性质:正数有正数有2个个平方根,它们平方根,它们互为相反互为相反数数;0的平方根是的平方根是0;负数负数没有平方根没有平方根。第6页/共46页若一个数的立方等于若一个数的立方等于a,a,那么这个那么这个数叫做数叫做 a a 的立方根的立方根或三次方根。或三次方根。1 1、什么是立方根?、什么是立方根?2 2、正数的立方根是一个、正数的立方根是一个_,负,负数的立方根是一个数的立方根是一个_,0 0 的立的立方根是方根是_;立方根是它本身的数;立方根是它本身的数是是_._.平方根是它本身的数是平方根是它本身的数是_算术平方根是它本身的数是算术平方根是它本身的数

5、是_._.正数正数负数负数0 01 1、-1-1、0 00 00 0、1 1第7页/共46页正数有立方根吗?如果有,有几个正数有立方根吗?如果有,有几个?负数呢?负数呢?零呢?零呢?一个正数有一个正的立方根;一个正数有一个正的立方根;一个负数有一个负的立方根,一个负数有一个负的立方根,零的立方根是零。零的立方根是零。(1)立方根的特征立方根的特征(2 2)平方根和立方根的异同点)平方根和立方根的异同点被开方数被开方数平方根平方根立方根立方根有两个互为相反数有两个互为相反数有一个有一个,是正数是正数无平方根无平方根零零有一个有一个,是负数是负数零零正数正数负数负数零零第8页/共46页你知道算术平

6、方根、平方根、立方根联系和区别吗?你知道算术平方根、平方根、立方根联系和区别吗?算术平方根算术平方根 平方根平方根 立方根立方根表示方表示方法法的取值的取值性性质质开方开方正数正数0负数负数正数(一个)正数(一个)0没有没有互为相反数(两个)互为相反数(两个)0没有没有正数(一个)正数(一个)0负数(一个)负数(一个)求一个数的平方根求一个数的平方根的运算叫开平方的运算叫开平方求一个数的立方根求一个数的立方根的运算叫开立方的运算叫开立方是本身是本身0,100,1,-1第9页/共46页=第10页/共46页2.说出下列各数的立方根:1.说出下列各数的平方根和算术平方根:说出下列各数的平方根和算术平

7、方根:(1)169(2)0.16(4)100(3)(5)(5)第11页/共46页4、下列运算中,正确的是(、下列运算中,正确的是()A第12页/共46页5、的平方根是(的平方根是()(A)(C)5 (B)(D)6、下列运算正确的是、下列运算正确的是()DD第13页/共46页3、如果一个数的平方根是、如果一个数的平方根是a3和和 2a15,求这个数的,求这个数的立立方根。方根。1、化简:、化简:第14页/共46页不要搞错了6488-4.-4,-3,-2,-1,0,1,2,3第15页/共46页下列说法正确的是()B第16页/共46页练习:1、8是 的平方根,64的平方根是 ;的平方根是 。2、的立

8、方根是(的立方根是(),),的平方根是的平方根是()5.5.一个正数一个正数x x的两个平方根分别是的两个平方根分别是a+1a+1和和a-3,a-3,则则 a=,x=a=,x=X=7146488-432-64的立方根是的立方根是_ 第17页/共46页当方程中出现平方时,若有解,一般都有两个解当方程中出现立方时,一般都有一个解当方程中出现立方时,一般都有一个解1.解解:2.解解:1.第18页/共46页自测:自测:1.1.如果一个数的平方根为如果一个数的平方根为a+1a+1和和2a-7,2a-7,求这求这个数?个数?3.已知已知y=求求2(x+y)的平方根)的平方根 4.已知已知5+的小数部分为的

9、小数部分为 m,7-的小数部分为的小数部分为n,求求m+n的值的值5.已知满足已知满足 ,求求a的值的值第19页/共46页2、实数的性质符号,分、实数的性质符号,分类:类:有理数和无理数有理数和无理数统称为统称为实数实数实数实数有理数有理数无理数无理数实数实数正实数正实数负实数负实数零零二、分类二、分类1、实数的定义,分类:、实数的定义,分类:第20页/共46页实实数数有理数有理数无理数无理数分数分数整数整数正整数正整数 0负整数负整数正分数正分数负分数负分数自然数自然数正无理数正无理数负无理数负无理数无限不循环小数无限不循环小数有限小数及无限循环小数有限小数及无限循环小数一般有三种情况一般有

10、三种情况第21页/共46页下列各数中有理数是下列各数中有理数是 :0.3737737773第22页/共46页判断下列说法是否正确:判断下列说法是否正确:(1)无限小数都是无理数;)无限小数都是无理数;(2)无理数都是无限小数;)无理数都是无限小数;(3)带根号的数都是无理数;)带根号的数都是无理数;(4)实数都是无理数;)实数都是无理数;(5)无理数都是实数)无理数都是实数;(6)没有根号的数都是有理数)没有根号的数都是有理数.第23页/共46页一、判断下列说法是否正确:一、判断下列说法是否正确:1.实数不是有理数就是无理数。实数不是有理数就是无理数。()2.无限小数都是无理数。无限小数都是无

11、理数。()3.无理数都是无限小数。无理数都是无限小数。()4.带根号的数都是无理数。带根号的数都是无理数。()5.两个无理数之和一定是无理数。(两个无理数之和一定是无理数。()6.所有的有理数都可以在数轴上表示,反过来,所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。(数轴上所有的点都表示有理数。()第24页/共46页数轴上两点数轴上两点A,B分别表示实数分别表示实数 和和 ,求,求A,B两点之间的距离两点之间的距离。第25页/共46页三、相反数、(负)倒数、绝对值、三、相反数、(负)倒数、绝对值、在实数范围内,相反数、倒数、绝对值的意义和有在实数范围内,相反数、倒数、绝对

12、值的意义和有理数的相反数、倒数、绝对值的意义完全一样。理数的相反数、倒数、绝对值的意义完全一样。例如例如:a、b互为相反数,互为相反数,c与与d互为倒数互为倒数则则a+1+b+cd=。2练习:已知实数练习:已知实数a、b在数轴上对应点的位置如图所示。在数轴上对应点的位置如图所示。化简:化简:b a ox2b第26页/共46页求下列数的相反数、倒数和绝对值:求下列数的相反数、倒数和绝对值:2232(2)的倒数是的倒数是 ;(3)2的绝对值是的绝对值是 ;(4)(1)8或或5第27页/共46页11、实数、实数a,b,c,d在数轴上的对应点如图在数轴上的对应点如图11所示,则所示,则它们从小到大的顺

13、序是它们从小到大的顺序是 。c d 0 b a图图111其中:其中:cdb第36页/共46页例:比较大小:例:比较大小:与与3 3、求差法比较大小、求差法比较大小解:解:0第37页/共46页1、的整数部分为的整数部分为3,则它的,则它的 小数部分是小数部分是 ;32六、无理数的整数部分与小数部分六、无理数的整数部分与小数部分第38页/共46页A.2或12 B.2或-12 C.-2或12 D.-2或-12第39页/共46页(2)七、实数的计算七、实数的计算解解:(2)第40页/共46页练习:计算:练习:计算:(3)(4)(2)第41页/共46页练习:计算下列各式的值练习:计算下列各式的值:第42页/共46页补充练习补充练习第43页/共46页第44页/共46页例例5、若、若求求 的值。的值。解:解:3a+40且且(4b-3)20而而3a+4+(4b-3)2=0 3a+4=0且且(4b-3)a=-43,b=34 a2003b2004=(-4/3)2003(3/4)2004=-34 第45页/共46页感谢您的观看。感谢您的观看。第46页/共46页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理工具

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁