《建立计量经济经济学模型的步骤和要点.ppt》由会员分享,可在线阅读,更多相关《建立计量经济经济学模型的步骤和要点.ppt(110页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一周 回顾建立计量经济经济学模型的步骤和要点理论模型的设计(变量、模型的数学形式、随机项的分布、参数估计的预期)样本数据的收集(数据的三种类型,数据质量完整性、准确性、可比性、一致性)模型参数的估计 模型的检验(经济意义检验、统计检验、计量经济学检验、模型预测检验)第一周 回顾计量经济学模型成功的三要素理论数据方法第二周 回顾概念区分:总体回归函数总体回归模型样本回归函数样本回归模型概念:条件均值、随机误差项第二周 回顾OLS的估计原理一元线性回归模型的关键假设:随机误差项独立,服从正态分布解释变量和随机误差项不相关第二周 回顾一元线性回归模型OLS估计量的表达式正规方程的表达式第二周 答疑
2、期望、方差、协方差、相关系数的直观含义期望衡量样本均值方差衡量样本值相对样本均值的偏离程度协方差衡量两个样本的相关性有多少,也就是一个样本的值的偏离程度会对另一个样本的值的偏离产生什么影响相关系数衡量两个样本的相关性有多少第二周 答疑为什么在回归参数的推导中我们仅看了一阶偏导,就确认是残差平方和最小而非最大?因为是平方和求和:第三周 回顾回归方程两个参数的估计量及其性质随机误差项的估计量第四周 课下作业假设检验中,什么是第一类错误,什么是第二类错误第二章第二章 经典单方程计量经济学模型:经典单方程计量经济学模型:一元线性回归模型一元线性回归模型 The Classical Single Equ
3、ation Econometric Model:Simple Linear Regression Model 本章内容本章内容 回归分析概述回归分析概述一元线性回归模型的一元线性回归模型的基本假设基本假设一元线性回归模型的参数估计一元线性回归模型的参数估计 一元线性回归模型的检验一元线性回归模型的检验一元线性回归模型的预测一元线性回归模型的预测实例及时间序列问题实例及时间序列问题2.1 2.1 回归分析概述回归分析概述(Regression Analysis)一、一、变量间的关系及回归分析的基本概念变量间的关系及回归分析的基本概念二、二、总体回归函数总体回归函数三、三、随机扰动项随机扰动项四、
4、四、样本回归函数样本回归函数一、变量间的关系及回归分析一、变量间的关系及回归分析的基本概念的基本概念1 1、变量间的关系、变量间的关系确定性关系或函数关系:确定性关系或函数关系:研究的是确定性现象研究的是确定性现象非随机变量间的关系。(非随机变量间的关系。(一一对应)统计依赖或相关关系:统计依赖或相关关系:研究的是非确定性现象研究的是非确定性现象随机变量间的关系。(随机变量间的关系。(非一一对应)对变量间对变量间统计依赖关系统计依赖关系的考察主要是通过的考察主要是通过相关相关分析分析(correlation analysis)或或回归分析回归分析(regression analysis)来完成
5、的。来完成的。相关分析相关分析适用于所有统计关系。适用于所有统计关系。相关系数相关系数(correlation coefficient)正相关正相关(positive correlation)负相关负相关(negative correlation)不相关不相关(non-correlation)回归分析回归分析仅对存在因果关系而言。仅对存在因果关系而言。注意:注意:不存在线性相关并不意味着不相关。不存在线性相关并不意味着不相关。存在相关关系并不一定存在因果关系。存在相关关系并不一定存在因果关系。相关分析相关分析对称地对待任何(两个)变量,两个变量对称地对待任何(两个)变量,两个变量都被看作是随机
6、的。都被看作是随机的。回归分析回归分析对变量的处理方法存在不对称性,即区分对变量的处理方法存在不对称性,即区分因变量(被解释变量)和自变量(解释变量),前因变量(被解释变量)和自变量(解释变量),前者是随机变量,后者不一定是。者是随机变量,后者不一定是。2 2、回归分析的基本概念、回归分析的基本概念回归分析回归分析(regression analysis)是研究一个变是研究一个变量关于另一个(些)变量的具体依赖关系的计量关于另一个(些)变量的具体依赖关系的计算方法和理论。算方法和理论。其目的其目的在于通过后者的已知或设定值,去估计在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值
7、。和(或)预测前者的(总体)均值。两类变量;两类变量;被解释变量被解释变量(Explained Variable)或)或应变量应变量(Dependent Variable)。)。解释变量解释变量(Explanatory Variable)或)或自变量自变量(Independent Variable)。)。关于变量的术语关于变量的术语Explained Variable Explanatory VariableDependent Variable Independent VariableEndogenous Variable Exogenous Variable Response Variabl
8、e Control VariablePredicted Variable Predictor VariableRegressand Regressor回归分析构成计量经济学的方法论基础,其主要回归分析构成计量经济学的方法论基础,其主要内容包括:内容包括:根据样本观察值对经济计量模型参数进行估计,求得根据样本观察值对经济计量模型参数进行估计,求得回归方程;回归方程;对回归方程、参数估计值进行显著性检验;对回归方程、参数估计值进行显著性检验;利用回归方程进行分析、评价及预测。利用回归方程进行分析、评价及预测。二、总体回归函数二、总体回归函数Population Regression Functio
9、n,PRF1 1、条件均值、条件均值(conditional mean)例例2.1.1:一个假想的社区有一个假想的社区有99户家庭组成,欲户家庭组成,欲研究该社区每月研究该社区每月家庭消费支出家庭消费支出Y与每月与每月家庭可家庭可支配收入支配收入X的关系。的关系。即如果知道了家庭的月收即如果知道了家庭的月收入,能否预测该社区家庭的平均月消费支出水入,能否预测该社区家庭的平均月消费支出水平。平。为达到此目的,将该为达到此目的,将该99户家庭划分为组内收入户家庭划分为组内收入差不多的差不多的10组,以分析每一收入组的家庭消费组,以分析每一收入组的家庭消费支出。支出。由于不确定因素的影响,对同一收入
10、水平由于不确定因素的影响,对同一收入水平X,不同家庭的消费支出不完全相同;不同家庭的消费支出不完全相同;但由于调查的完备性,给定收入水平但由于调查的完备性,给定收入水平X,则消,则消费支出费支出Y的分布是确定的,即以的分布是确定的,即以X的给定值为的给定值为条件的条件的Y的的条件分布条件分布(Conditional distribution)是已知的,例如:)是已知的,例如:P(Y=561|X=800)=1/4。因此,给定收入因此,给定收入X的值的值Xi,可得消费支出,可得消费支出Y的的条件均值条件均值(conditional mean)或)或条件期望条件期望(conditional expe
11、ctation):):E(Y|X=Xi)。该例中:该例中:E(Y|X=800)=?E(Y|X=800)=605描出散点图发现:随着收入的增加,消费描出散点图发现:随着收入的增加,消费“平平均地说均地说”也在增加,且也在增加,且Y的条件均值均落在一的条件均值均落在一根正斜率的直线上。根正斜率的直线上。05001000150020002500300035005001000150020002500300035004000每月可支配收入X(元)每月消费支出Y(元)2 2、总体回归函数、总体回归函数在给定解释变量在给定解释变量Xi条件下被解释变量条件下被解释变量Yi的期望的期望轨迹称为轨迹称为总体回归线
12、总体回归线(population regression line),或更一般地称为),或更一般地称为总体回归曲线总体回归曲线(population regression curve)。)。相应的函数称为(双变量)相应的函数称为(双变量)总体回归函数总体回归函数(population regression function,PRF)。)。含义:含义:回归函数(回归函数(PRF)说明被解释变量)说明被解释变量Y的的平均状态(总体条件期望)随解释变量平均状态(总体条件期望)随解释变量X变化变化的规律。的规律。函数形式:函数形式:可以是线性或非线性的。可以是线性或非线性的。例例2.1.1中,中,将居民
13、消费支出看成是其可支配收将居民消费支出看成是其可支配收入的线性函数时入的线性函数时:为为线性函数。线性函数。其中,其中,0 0,1 1是未知参数,称为是未知参数,称为回归系数回归系数(regression coefficients)。)。三、随机扰动项三、随机扰动项Stochastic Disturbance总体回归函数说明在给定的收入水平总体回归函数说明在给定的收入水平Xi下,该下,该社区家庭平均的消费支出水平。社区家庭平均的消费支出水平。但对某一个别的家庭,其消费支出可能与该平但对某一个别的家庭,其消费支出可能与该平均水平有偏差。均水平有偏差。称为观察值围绕它的期望值的称为观察值围绕它的期
14、望值的离差离差(deviation),是一个不可观测的随机变量,),是一个不可观测的随机变量,又称为又称为随机干扰项随机干扰项(stochastic disturbance)或)或随机误差项随机误差项(stochastic error)。)。例例2.1.1中,给定收入水平中,给定收入水平Xi,个别家庭的支出个别家庭的支出可表示为两部分之和:可表示为两部分之和:该收入水平下所有家庭的平均消费支出该收入水平下所有家庭的平均消费支出E(Y|Xi),称,称为为系统性(系统性(systematic)或或确定性(确定性(deterministic)部部分;分;其他其他随机随机或或非确定性(非确定性(non
15、systematic)部分部分 i。称为称为总体回归函数(总体回归函数(PRF)的随机设定形式。表的随机设定形式。表明被解释变量除了受解释变量的系统性影响外,明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。由于方程中引入了还受其他因素的随机性影响。由于方程中引入了随机项,成为计量经济学模型,因此也称为随机项,成为计量经济学模型,因此也称为总体总体回归模型回归模型(PRM)。随机误差项主要包括下列因素:随机误差项主要包括下列因素:在解释变量中被忽略的因素的影响;在解释变量中被忽略的因素的影响;影响不显著的因素影响不显著的因素未知的影响因素未知的影响因素无法获得数据的因素无法获
16、得数据的因素变量观测值的观测误差的影响;变量观测值的观测误差的影响;模型关系的设定误差的影响;模型关系的设定误差的影响;其它随机因素的影响。其它随机因素的影响。关于随机项的说明:关于随机项的说明:将随机项区分为将随机项区分为“源生的随机扰动源生的随机扰动”和和“衍生的随衍生的随机误差机误差”。“源生的随机扰动源生的随机扰动”仅包含无数对被解释变量影响仅包含无数对被解释变量影响不显著的因素的影响,服从极限法则(大数定律和不显著的因素的影响,服从极限法则(大数定律和中心极限定理),满足基本假设。中心极限定理),满足基本假设。“衍生的随机误差衍生的随机误差”包含上述所有内容,并不一定包含上述所有内容
17、,并不一定服从极限法则,不一定满足基本假设。服从极限法则,不一定满足基本假设。在在9.39.3中将进一步讨论。中将进一步讨论。四、样本回归函数四、样本回归函数Sample Regression Function,SRF1 1、样本回归函数、样本回归函数问题:问题:能否从一次抽样中获得总体的近似信息?能否从一次抽样中获得总体的近似信息?如果可以,如何从抽样中获得总体的近似信息?如果可以,如何从抽样中获得总体的近似信息?在例在例2.1.12.1.1的总体中有如下一个样本,的总体中有如下一个样本,能否从该能否从该样本估计总体回归函数?样本估计总体回归函数?回答:能回答:能 该样本的该样本的散点图(散
18、点图(scatter diagram):画一条直线以尽好地拟合该散点图,由于样本取自总体,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该直线近似地代表总体回归线。该直线称为可以该直线近似地代表总体回归线。该直线称为样本回归线样本回归线(sample regression lines)。样本回归线的函数形式为:样本回归线的函数形式为:称为称为样本回归函数样本回归函数(sample regression function,SRF)。注意:注意:这里将样本回归线样本回归线看成总体回归线总体回归线的近似替代则则2 2、样本回归模型、样本回归模型样本回归函数的随机形式:样本回归函数的随机形式:
19、由于方程中引入了随机项,成为计量经济模型,由于方程中引入了随机项,成为计量经济模型,因此也称为因此也称为样本回归模型样本回归模型(sample regression model)。式中,ie称为(样本)残差(样本)残差(或剩余剩余)项项(residual),代表了其他影响iY的随机因素的集合,可看成是im的估计量im。回归分析的主要目的:回归分析的主要目的:根据样本回归函数根据样本回归函数SRF,估计总体回归函数,估计总体回归函数PRF。2.2 2.2 一元线性回归模型的基本假设一元线性回归模型的基本假设(Assumptions of Simple Linear Regression Mode
20、l)一、关于模型设定的假设一、关于模型设定的假设 二、关于解释变量的假设二、关于解释变量的假设 三、关于随机项的假设三、关于随机项的假设说明说明为保证参数估计量具有良好的性质,通常对模型为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。提出若干基本假设。实际上这些假设与所采用的估计方法紧密相关。实际上这些假设与所采用的估计方法紧密相关。下面的假设主要是针对采用下面的假设主要是针对采用普通最小二乘法普通最小二乘法(Ordinary Least Squares,OLS)估计而提出的。估计而提出的。所以,在有些教科书中称为所以,在有些教科书中称为“The Assumption Underl
21、ying the Method of Least Squares”。在不同的教科书上关于基本假设的陈述略有不同,在不同的教科书上关于基本假设的陈述略有不同,下面进行了重新归纳。下面进行了重新归纳。1 1、关于模型设定的假设、关于模型设定的假设模型设定正确假设。模型设定正确假设。The regression model is correctly specified.模型选择了正确的变量模型选择了正确的变量模型选择了正确的函数形式模型选择了正确的函数形式否则,否则,设定偏误设定偏误(第(第5章)章)2 2、关于解释变量的假设、关于解释变量的假设确定性假设。确定性假设。X values are fi
22、xed in repeated sampling.More technically,X is assumed to be nonstochastic.注意:注意:“in repeated sampling”的含义是的含义是什么?什么?与随机项不相关假设。与随机项不相关假设。The covariances between Xi and i are zero.由确定性假设可以推断。由确定性假设可以推断。上述两层含义即上述两层含义即假设假设2:解释变量解释变量X是确定性变量,不是随机变量,在重复是确定性变量,不是随机变量,在重复抽样中取固定值抽样中取固定值假设假设3分解如下分解如下观测值变化假设。观
23、测值变化假设。X values in a given sample must not all be the same.无完全共线性假设。无完全共线性假设。There is no perfect multicollinearity among the explanatory variables.适用于多元线性回归模型。适用于多元线性回归模型。样本方差假设。样本方差假设。随着样本容量的无限增加,解随着样本容量的无限增加,解释变量释变量X的样本方差趋于一有限常数。的样本方差趋于一有限常数。时间序列数据作时间序列数据作样本时间适用样本时间适用3 3、关于随机项的假设、关于随机项的假设0均值假设。均值假
24、设。The conditional mean value of i is zero.同方差假设。同方差假设。The conditional variances of i are identical.(Homoscedasticity)由模型设定正确假设推断。由模型设定正确假设推断。是否满足需要检验。是否满足需要检验。序列不相关假设。序列不相关假设。The correlation between any two i and j is zero.是否满足需要检验。是否满足需要检验。4 4、随机项的正态性假设、随机项的正态性假设在采用在采用OLS进行参数估计时,不需要正态性假进行参数估计时,不需要正
25、态性假设。在利用参数估计量进行统计推断时,需要设。在利用参数估计量进行统计推断时,需要假设随机项的概率分布。假设随机项的概率分布。一般假设随机项服从正态分布。可以利用中心一般假设随机项服从正态分布。可以利用中心极限定理(极限定理(central limit theorem,CLT)进行)进行证明。证明。正态性假设。正态性假设。The s follow the normal distribution.5 5、CLRM CLRM 和和 CNLRMCNLRM以上假设(正态性假设除外)也称为线性回归以上假设(正态性假设除外)也称为线性回归模型的模型的经典假设经典假设或或高斯(高斯(Gauss)假设)假
26、设,满足,满足该假设的线性回归模型,也称为该假设的线性回归模型,也称为经典线性回归经典线性回归模型模型(Classical Linear Regression Model,CLRM)。)。同时满足正态性假设的线性回归模型,称为同时满足正态性假设的线性回归模型,称为经经典正态线性回归模型典正态线性回归模型(Classical Normal Linear Regression Model,CNLRM)。)。2.3 2.3 一元线性回归模型的参数估计一元线性回归模型的参数估计(Estimation of Simple Linear Regression Model)一、参数的普通最小二乘估计(一、参
27、数的普通最小二乘估计(OLSOLS)二、参数估计的最大或然法二、参数估计的最大或然法(ML)(ML)三、参数估计的矩法(三、参数估计的矩法(MMMM)四、最小二乘估计量的性质四、最小二乘估计量的性质五、参数估计量的概率分布及随机干五、参数估计量的概率分布及随机干扰项方差的估计扰项方差的估计 一、参数的普通最小二乘估计(一、参数的普通最小二乘估计(OLSOLS)1 1、最小二乘原理、最小二乘原理根据被解释变量的所有观测值与估计值之差的根据被解释变量的所有观测值与估计值之差的平方和最小的原则求得参数估计量。平方和最小的原则求得参数估计量。为什么取平方和?为什么取平方和?2 2、正规方程组、正规方程
28、组该关于参数估计量的线性方程组称为该关于参数估计量的线性方程组称为正规方程正规方程组组(normal equations)。)。3 3、参数估计量、参数估计量求解正规方程组得到结构参数的普通最小二乘求解正规方程组得到结构参数的普通最小二乘估计量估计量(ordinary least squares estimators)及及其离差形式:其离差形式:分布参数的普通最小二乘估计量分布参数的普通最小二乘估计量4 4、“估计量估计量”(estimator)和)和“估计值估计值”(estimate)的区别的区别 如果给出的参数估计结果是由一个具体样本资如果给出的参数估计结果是由一个具体样本资料计算出来的,
29、它是一个料计算出来的,它是一个“估计值估计值”,或者,或者“点估计点估计”,是参数估计量的一个具体数值;,是参数估计量的一个具体数值;如果把上式看成参数估计的一个表达式,那么,如果把上式看成参数估计的一个表达式,那么,则是则是Y Yi i的函数,而的函数,而Y Yi i是随机变量,所以参数估是随机变量,所以参数估计也是随机变量,在这个角度上,称之为计也是随机变量,在这个角度上,称之为“估估计量计量”。二、参数估计的最大似然法二、参数估计的最大似然法(ML)(ML)1 1、最大似然法、最大似然法最大似然法最大似然法(Maximum Likelihood,ML),也称,也称最最大或然法大或然法,是
30、不同于最小二乘法的另一种参数,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的估计方法,是从最大或然原理出发发展起来的其它估计方法的基础。其它估计方法的基础。基本原理:基本原理:当从模型总体随机抽取当从模型总体随机抽取n组样本观组样本观测值后,最合理的参数估计量应该使得从模型测值后,最合理的参数估计量应该使得从模型中抽取该中抽取该n组样本观测值的概率最大。组样本观测值的概率最大。ML必须已知随机项的分布。必须已知随机项的分布。2 2、估计步骤、估计步骤Yi的分布Yi的概率函数 Y的所有样本观测值的联合概率似然函数 对数似然函数 对数似然函数极大化的一阶条件结构参数的ML估
31、计量3 3、讨论、讨论在满足一系列基本假设的情况下,模型结构参在满足一系列基本假设的情况下,模型结构参数的数的最大似然估计量最大似然估计量与与普通最小二乘估计量普通最小二乘估计量是是相同的。相同的。但是,分布参数的估计结果不同。但是,分布参数的估计结果不同。三、参数估计的矩法(三、参数估计的矩法(MM)基本原理:基本原理:用样本矩估计总体矩用样本矩估计总体矩四、最小二乘估计量的性质四、最小二乘估计量的性质1 1、概述、概述当估计出模型参数后,需考虑参数估计值的精当估计出模型参数后,需考虑参数估计值的精度,即是否能代表总体参数的真值,或者说需度,即是否能代表总体参数的真值,或者说需考察参数估计量
32、的统计性质。考察参数估计量的统计性质。准则:准则:线性性线性性(linear),即它是否是另一随机变量的线性,即它是否是另一随机变量的线性函数;函数;无偏性无偏性(unbiased),即它的均值或期望值是否等于,即它的均值或期望值是否等于总体的真实值;总体的真实值;有效性有效性(efficient),即它是否在所有线性无偏估,即它是否在所有线性无偏估计量中具有最小方差。计量中具有最小方差。这三个准则也称作估计量的这三个准则也称作估计量的小样本性质小样本性质。拥有拥有这类性质的估计量称为这类性质的估计量称为最佳线性无偏估计量最佳线性无偏估计量(best liner unbiased estima
33、tor,BLUE)。当不满足小样本性质时,需进一步考察估计量当不满足小样本性质时,需进一步考察估计量的的大样本或渐近性质大样本或渐近性质(asymptotic properties):渐渐近近无无偏偏性性,即即样样本本容容量量趋趋于于无无穷穷大大时时,是是否否它它的的均值序列趋于总体真值;均值序列趋于总体真值;一一致致性性,即即样样本本容容量量趋趋于于无无穷穷大大时时,它它是是否否依依概概率率收敛于总体的真值;收敛于总体的真值;渐渐近近有有效效性性,即即样样本本容容量量趋趋于于无无穷穷大大时时,是是否否它它在在所有的一致估计量中具有最小的渐近方差。所有的一致估计量中具有最小的渐近方差。2、高斯
34、、高斯马尔可夫定理马尔可夫定理(Gauss-Markov theorem)在给定经典线性回归的假定下,最小二乘估计在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。量是具有最小方差的线性无偏估计量。下面分别对最小二乘估计量的线性性、无偏性下面分别对最小二乘估计量的线性性、无偏性和有效性进行证明,作为不熟悉的同学的自学和有效性进行证明,作为不熟悉的同学的自学内容。内容。证:证:易知故同样地,容易得出(2)证明最小方差性其中,ci=ki+di,di为不全为零的常数则容易证明由于最小二乘估计量拥有一个由于最小二乘估计量拥有一个“好好”的估计量所应的估计量所应具备的小样本特性,
35、它自然也拥有大样本特性具备的小样本特性,它自然也拥有大样本特性。五、参数估计量的概率分布及随机干五、参数估计量的概率分布及随机干扰项方差的估计扰项方差的估计1 1、参数估计量的概率分布、参数估计量的概率分布 2 2、随机误差项、随机误差项 的方差的方差 2 2的估计的估计 2又称为又称为总体方差总体方差。由于随机项由于随机项 i i不可观测,只能从不可观测,只能从 i i的估计的估计残残差差ei i出发,对总体方差进行估计。出发,对总体方差进行估计。可以证明可以证明,2的最小二乘估计量最小二乘估计量为:它是关于它是关于 2的无偏估计量。的无偏估计量。在在最大或然估计法最大或然估计法中,求解似然
36、方程:中,求解似然方程:2 2的的最最大大或或然然估估计计量量不不具具无无偏偏性性,但但却却具具有有一一致性致性。2.4 2.4 一元线性回归模型的统计检验一元线性回归模型的统计检验Statistical Test of Simple Linear Regression Model 一、拟合优度检验一、拟合优度检验 二、变量的显著性检验二、变量的显著性检验 三、参数的置信区间三、参数的置信区间 说说 明明回归分析回归分析是要通过样本所估计的参数来代替总是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体的真实参数,或者说是用样本回归线代替总体回归线。体回归线。尽管从尽管从
37、统计性质统计性质上已知,如果有足够多的重复上已知,如果有足够多的重复 抽样,参数的估计值的期望(均值)就等于其抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。一定就等于该真值。那么,在一次抽样中,参数的估计值与真值的那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行差异有多大,是否显著,这就需要进一步进行统计检验统计检验。主要包括主要包括拟合优度检验、变量的显著性检验及拟合优度检验、变量的显著性检验及参数的区间估计。参数的区间估计。一、拟合优度检验一、拟合优度检验Goodne
38、ss of Fit,Coefficient of Determination1 1、回答一个问题、回答一个问题拟合优度检验拟合优度检验拟合优度检验拟合优度检验:对样本回归直线与样本观测值对样本回归直线与样本观测值之间拟合程度的检验。之间拟合程度的检验。问题:问题:采用普通最小二乘估计方法,已经保证采用普通最小二乘估计方法,已经保证了模型最好地拟合了样本观测值,为什么还要了模型最好地拟合了样本观测值,为什么还要检验拟合程度?检验拟合程度?2 2、总离差平方和的分解、总离差平方和的分解Y Y的的i i个观测值与样本均个观测值与样本均值的离差值的离差由回归由回归直线解直线解释的部释的部分分 回归直线
39、不能回归直线不能解释的部分解释的部分 离差分解为两离差分解为两部分之和部分之和 对于所有样本点,则需考虑离差的平方和对于所有样本点,则需考虑离差的平方和:记总体平方和总体平方和(Total Sum of Squares)回归平方和回归平方和(Explained Sum of Squares)残差平方和残差平方和(Residual Sum of Squares)TSS=ESS+RSS Y的观测值围绕其均值的的观测值围绕其均值的总离差总离差(total variation)可分解为两部分:一部分来自回归线可分解为两部分:一部分来自回归线(ESS),另一,另一部分则来自随机势力部分则来自随机势力(R
40、SS)。在给定样本中,在给定样本中,TSS不变,不变,如果实际观测点离样本回归线越近,则如果实际观测点离样本回归线越近,则ESS在在TSS中占的比重越大,因此中占的比重越大,因此 拟合优度拟合优度:回归平方和回归平方和ESS/YESS/Y的总离差的总离差TSSTSS3 3、可决系数、可决系数R R2 2统计量统计量是一个非负的统计量。取值范围:是一个非负的统计量。取值范围:00,11越接近越接近1 1,说明实际观测点离回归线越近,拟,说明实际观测点离回归线越近,拟合优度越高。合优度越高。随着抽样的不同而不同。为此,对可决系数的随着抽样的不同而不同。为此,对可决系数的统计可靠性也应进行检验,这将
41、在第统计可靠性也应进行检验,这将在第3章中进章中进行。行。二、变量的显著性检验二、变量的显著性检验 Testing Significance of Variable说明说明在一元线性模型中,变量的显著性检验在一元线性模型中,变量的显著性检验就是判断就是判断X X是否对是否对Y Y具有显著的线性影响。具有显著的线性影响。变量的显著性检验所应用的方法是数理变量的显著性检验所应用的方法是数理统计学中的统计学中的假设检验假设检验。通过检验通过检验变量的参数真值是否为零变量的参数真值是否为零来实来实现显著性检验。现显著性检验。1 1、假设检验(、假设检验(Hypothesis Testing)所谓所谓假
42、设检验假设检验,就是事先对总体参数或总体分,就是事先对总体参数或总体分布形式作出一个假设,然后利用样本信息来判布形式作出一个假设,然后利用样本信息来判断原假设是否合理,即判断样本信息与原假设断原假设是否合理,即判断样本信息与原假设是否有显著差异,从而决定是否接受或否定原是否有显著差异,从而决定是否接受或否定原假设。假设。假设检验的程序假设检验的程序/步骤步骤假设检验采用的逻辑推理方法是反证法。假设检验采用的逻辑推理方法是反证法。先假先假定原假设正确,然后根据样本信息,观察由此定原假设正确,然后根据样本信息,观察由此假设而导致的结果是否合理,从而判断是否接假设而导致的结果是否合理,从而判断是否接
43、受原假设。受原假设。1 1、假设检验(、假设检验(Hypothesis Testing)判断结果合理与否,是基于判断结果合理与否,是基于“小概率事件不易小概率事件不易发生发生”这一原理的。这一原理的。该原理认为“小概率事件在一次试验中几乎不可能发生”。在原假设下构造一个事件,这个事件在原假设正确的条件下是一个小概率事件,随机抽取一组容量为n的样本观测值进行该事件的试验,如果该事件发生了,说明“原假设正确”是错误的,因为不应该出现的小概率事件出现了。因而应该拒绝原假设;反之,如果该小概率事件没有出现,就没有理由拒绝原假设,应该接受原假设。2、变量的显著性检验、变量的显著性检验t检验检验用2的估计
44、量代替,构造t统计量对总体参数提出假设:H0:1=0,H1:10如果变量X是显著的,其参数就应该显著地不等于0由样本计算由样本计算t统计量值;统计量值;给定给定显著性水平显著性水平(level of significance),查,查t分分布表得布表得临界值临界值(critical value)t /2(n-2);比较,判断:比较,判断:若若|t|t /2(n-2),则以(,则以(1)的)的置信度置信度(confidence coefficient)拒绝拒绝H0,接受,接受H1;若若|t|t /2(n-2),则以(,则以(1)的置信度)的置信度不拒绝不拒绝H0。自学教材自学教材p48p48例题
45、,学会检验的全过程。例题,学会检验的全过程。3、关于常数项的显著性检验、关于常数项的显著性检验T T检验同样可以进行。检验同样可以进行。一般不以一般不以t t检验决定常数项是否保留在模型中,检验决定常数项是否保留在模型中,而是从经济意义方面分析回归线是否应该通过而是从经济意义方面分析回归线是否应该通过原点。原点。三、参数的置信区间三、参数的置信区间Confidence Interval of Parameter1 1、概念、概念回归分析希望通过样本得到的参数估计量能够回归分析希望通过样本得到的参数估计量能够代替总体参数。代替总体参数。假设检验假设检验可以通过一次抽样的结果检验总体参可以通过一次
46、抽样的结果检验总体参数可能的假设值的范围(例如是否为零),但数可能的假设值的范围(例如是否为零),但它并没有指出在一次抽样中样本参数值到底离它并没有指出在一次抽样中样本参数值到底离总体参数的真值有多总体参数的真值有多“近近”。要判断样本参数的估计值在多大程度上要判断样本参数的估计值在多大程度上“近似近似”地替代总体参数的真值,需要通过构造一个地替代总体参数的真值,需要通过构造一个以样本参数的估计值为中心的以样本参数的估计值为中心的“区间区间”,来考,来考察它以多大的可能性(概率)包含着真实的参察它以多大的可能性(概率)包含着真实的参数值。这种方法就是参数检验的数值。这种方法就是参数检验的置信区
47、间估计置信区间估计。如如果果存存在在这这样样一一个个区区间间,称称之之为为置置信信区区间间;1-1-称称 为为 置置 信信 系系 数数(置置 信信 度度)(confidence coefficient),称称为为显显著著性性水水平平;置置信信区区间间的的端端点点称为称为置信限(置信限(confidence limit)。2、一元线性模型中、一元线性模型中 i 的置信区间的置信区间T分布为双尾分布(1-(1-)的置信度的置信度下下,i的置信的置信区间是区间是 在上述收入收入-消费支出消费支出例题中,如果给定=0.01,查表得:由于于是,1 1、0 0的置信区间分别为:的置信区间分别为:(0.60
48、56,0.7344)0.6056,0.7344)(-6.719,291.52-6.719,291.52)显然,在该例题中,我们对结果的正确显然,在该例题中,我们对结果的正确陈述应该是:陈述应该是:边际消费倾向边际消费倾向1 1是以是以99%99%的的置信度处于以置信度处于以0.6700.670为中心的区间为中心的区间(0.6056,0.7344)0.6056,0.7344)中。中。由于置信区间一定程度地给出了样本参数估计由于置信区间一定程度地给出了样本参数估计值与总体参数真值的值与总体参数真值的“接近接近”程度,因此置信程度,因此置信区间越小越好。区间越小越好。要缩小置信区间,需要要缩小置信区
49、间,需要增大样本容量增大样本容量n n。因为在同样的置信水平下,因为在同样的置信水平下,n n越大,越大,t t分布表中的临界值越小;同时,增大样本容量,分布表中的临界值越小;同时,增大样本容量,还可使样本参数估计量的标准差减小;还可使样本参数估计量的标准差减小;提高模型的拟合优度。提高模型的拟合优度。因为样本参数估计量的标准因为样本参数估计量的标准差与残差平方和呈正比,模型拟合优度越高,残差差与残差平方和呈正比,模型拟合优度越高,残差平方和越小。平方和越小。2.5 2.5 一元线性回归分析的应用:一元线性回归分析的应用:预测问题预测问题一、预测值一、预测值条件均值条件均值或或个值的一个无偏估
50、计个值的一个无偏估计二、总体条件均值与个值预测值的置信区间二、总体条件均值与个值预测值的置信区间 对于一元线性回归模型对于一元线性回归模型 给定样本以外的解释变量的观测值给定样本以外的解释变量的观测值X0,可以得到,可以得到被解释变量的预测值被解释变量的预测值 0 0 ,可以此作为其,可以此作为其条件均条件均值值E(Y|X=X0)或或个别值个别值Y0的一个近似估计。的一个近似估计。严格地说,这只是被解释变量的预测值的估计值,严格地说,这只是被解释变量的预测值的估计值,而不是预测值。原因而不是预测值。原因:参数估计量不确定;参数估计量不确定;随机项的影响。随机项的影响。说说 明明一、预测值是条件