单方程计量经济学模型第二章经典单方程计量经济学模型.ppt

上传人:赵** 文档编号:82668392 上传时间:2023-03-26 格式:PPT 页数:36 大小:430.50KB
返回 下载 相关 举报
单方程计量经济学模型第二章经典单方程计量经济学模型.ppt_第1页
第1页 / 共36页
单方程计量经济学模型第二章经典单方程计量经济学模型.ppt_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《单方程计量经济学模型第二章经典单方程计量经济学模型.ppt》由会员分享,可在线阅读,更多相关《单方程计量经济学模型第二章经典单方程计量经济学模型.ppt(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、单方程计量经济学模型单方程计量经济学模型理论与方法理论与方法Theory and Methodology of Single-Equation Econometric Model 第二章第二章 经典单方程计量经济学模型:经典单方程计量经济学模型:一元线性回归模型一元线性回归模型 回归分析概述回归分析概述 一元线性回归模型的参数估计一元线性回归模型的参数估计 一元线性回归模型检验一元线性回归模型检验一元线性回归模型预测一元线性回归模型预测实例实例2.1 2.1 回归分析概述回归分析概述一、变量间的关系及回归分析的基本概念一、变量间的关系及回归分析的基本概念 二、总体回归函数二、总体回归函数三、随

2、机扰动项三、随机扰动项四、样本回归函数(四、样本回归函数(SRFSRF)2.1 2.1 回归分析概述回归分析概述 (1)确确定定性性关关系系或函函数数关关系系:研究的是确定现象非随机变量间的关系。(2)统统计计依依赖赖或相相关关关关系系:研究的是非确定现象随机变量间的关系。一、变量间的关系及回归分析的基本概念一、变量间的关系及回归分析的基本概念 1 1、变量间的关系、变量间的关系 经济变量之间的关系,大体可分为两类:对变量间对变量间统计依赖关系统计依赖关系的考察主要是通过的考察主要是通过相关分析相关分析(correlation analysis)或或回归分析回归分析(regression an

3、alysis)来完来完成的:成的:例如例如:函数关系:函数关系:统计依赖关系统计依赖关系/统计相关关系:统计相关关系:不线性相关并不意味着不相关;有相关关系并不意味着一定有因果关系;回归分析回归分析/相关分析相关分析研究一个变量对另一个(些)变量的统计依赖关系,但它们并不意味着一定有因果关系。相关分析相关分析对称地对待任何(两个)变量,两个变量都被看作是随机的。回归分析回归分析对变量的处理方法存在不对称性,即区分应变量(被解释变量)和自变量(解释变量):前者是随机变量,后者不是。注意:注意:回归分析回归分析(regression analysis)是研究一个变量关于另一个是研究一个变量关于另一

4、个(些)变量的具体依赖关系的计算方法和理论(些)变量的具体依赖关系的计算方法和理论。其用意其用意:在于通过后者的已知或设定值,去估计和(或)预在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值测前者的(总体)均值。这里:前一个变量被称为被解释变量被解释变量(Explained Variable)或应变量应变量(Dependent Variable),),后一个(些)变量被称为解释变量解释变量(Explanatory Variable)或自变量自变量(Independent Variable)。2 2、回归分析的基本概念、回归分析的基本概念 回归分析构成计量经济学的方法论基础,其主

5、要内容包括:回归分析构成计量经济学的方法论基础,其主要内容包括:(1)根据样本观察值对经济计量模型参数进行估计,求得回回归方程;归方程;(2)对回归方程、参数估计值进行显著性检验;(3)利用回归方程进行分析、评价及预测。由于变量间关系的随机性,回归分析回归分析关心的是根关心的是根据解释变量的已知或给定值,考察被解释变量的总体据解释变量的已知或给定值,考察被解释变量的总体均值均值,即当解释变量取某个确定值时,与之统计相关的被解释变量所有可能出现的对应值的平均值。例例2.1:一个假想的社区有100户家庭组成,要研究该社区每月家庭消费支出家庭消费支出Y与每月家庭可支配收家庭可支配收入入X的关系。即如

6、果知道了家庭的月收入,能否预测该社区家庭的平均月消费支出水平。二、总体回归函数二、总体回归函数 为达到此目的,将该100户家庭划分为组内收入差不多的10组,以分析每一收入组的家庭消费支出。(1)由于不确定因素的影响,对同一收入水平X,不同家庭的消费支出不完全相同;(2)但由于调查的完备性,给定收入水平X的消费支出Y的分布是确定的,即以X的给定值为条件的Y的条件分布条件分布(Conditional distribution)是已知的,如:P(Y=561|X=800)=1/4。因此,给定收入X的值Xi,可得消费支出Y的条件条件均值均值(conditional mean)或条件期望条件期望(cond

7、itional expectation):E(Y|X=Xi)该例中:E(Y|X=800)=561分析:分析:描出散点图发现:随着收入的增加,消费“平均地说平均地说”也在增加,且Y的条件均值均落在一根正斜率的直线上。这条直线称为总体回归线总体回归线。05001000150020002500300035005001000150020002500300035004000每月可支配收入X(元)每月消费支出Y(元)概念:概念:在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线总体回归线(population regression line),或更一般地称为总体回归曲线总体回归曲线(popul

8、ation regression curve)。称为(双变量)总体回归函数总体回归函数(population regression function,PRF)。相应的函数:回归函数(PRF)说明被解释变量Y的平均状态(总体条件期望)随解释变量X变化的规律。含义:含义:函数形式:函数形式:可以是线性或非线性的。例2.1中,将居民消费支出看成是其可支配收入的线性函数时:为一线性函数。线性函数。其中,0,1是未知参数,称为回归系数回归系数(regression coefficients)。三、随机扰动项三、随机扰动项 总体回归函数说明在给定的收入水平Xi下,该社区家庭平均的消费支出水平。但对某一个别

9、的家庭,其消费支出可能与该平均水平有偏差。称i为观察值Yi围绕它的期望值E(Y|Xi)的离差离差(deviation),是一个不可观测的随机变量,又称为随机干扰项随机干扰项(stochastic disturbance)或随机误随机误差项差项(stochastic error)。记例2.1中,个别家庭的消费支出为:(*)式称为总体回归函数总体回归函数(方程)(方程)PRFPRF的随机设的随机设定形式。表明被解释变量除了受解释变量的系统性影定形式。表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响响外,还受其他因素的随机性影响。(1)该收入水平下所有家庭的平均消费支出E(Y|X

10、i),称为系统性(系统性(systematic)或确定性确定性(deterministic)部分部分。(2)其他随机随机或非确定性非确定性(nonsystematic)部分部分 i。即,给定收入水平Xi,个别家庭的支出可表示为两部分之和:(*)由于方程中引入了随机项,成为计量经济学模型,因此也称为总体回归模型总体回归模型。为什么要引入随机扰动项模型中引入反映不确定因素影响的随机扰动项的目的在于使模型更符合客观经济活动实际。干扰项是从模型中省略下来而又集体地影响着Y地全部变量地替代物简单线性需求函数不可能包罗万象地引入全部影响变量我们以最简单的线性需求函数为例进行分析。Qd=b0+b1X1理论分

11、析和实践经验表明,某种商品需求量不仅趋近于价格,而且趋近于替代商品的价格X2,消费者收入X3和消费者偏好X4等等。将所有对需求量有影响的个变量引入方程:Qd=b0+b1X1+b2X2+b3X3+b4X4+bkXk即使如此也还可能有其他次要因素影响需求量,譬如社会风尚,心理变化甚至天气等等。总之,不可能巨细无遗地全部都引入。次要因素的综合效应是不能忽视的未引入的这些随机变量有的可以度量,有些不可以度量,在实际观测中,有时发生影响有时又不发生影响,记为随机变量Zi(i=1,2,m)。从个别意义上,这些次要因素可能是不重要的,但所有这些的综合效应是不能忽视的。否则,模型将与实际不符。于是将它们也引入

12、模型。必须另外寻找解决问题的思路全部变量引入显然是不必要的。计量经济学将这些或者次要,或者偶然的,或者不可测度的变量用一个随机扰动项来概括,需求函数:这是一个随机方程。是随机变量Zj的线性组合,也是一个随机变量。它代表所有未列入模型的那些次要因素的综合影响。由中心极限定理服从正态分布 进一步分析相当于诸随机变量Zj的均值因此,由中心极限定理,无论因此,由中心极限定理,无论ZjZj原来的分布形式如何,只要它们原来的分布形式如何,只要它们相互独立,相互独立,m m足够大,就会有足够大,就会有趋于正态分布。趋于正态分布。而且正态分布简单易用,且数理统计学中研究的成果很多,可以而且正态分布简单易用,且

13、数理统计学中研究的成果很多,可以借鉴。借鉴。样本均值的抽样分布样本均值的抽样分布与中心极限定理与中心极限定理 =50=50=50 =10=10=10X X X总体分布总体分布总体分布总体分布总体分布总体分布n n=4=4抽样分布抽样分布抽样分布抽样分布抽样分布抽样分布xn n=16=16当当当当总总总总体体体体服服服服从从从从正正正正态态态态分分分分布布布布N N(,2 2)时时时时,来来来来自自自自该该该该总总总总体体体体的的的的所所所所有有有有容容容容量量量量为为为为n n的的的的样样样样本本本本的的的的均均均均值值值值 x x也也也也服服服服从从从从正正正正态态态态分分分分布布布布,x

14、x 的的的的数数数数学期望为学期望为学期望为学期望为,方差为方差为方差为方差为 2 2/n n。即即即即 x xN N(,2 2/n n)中心极限定理(central limit theorem)当当样本容量足够样本容量足够大时大时(n n 30)30),样本均值的抽样样本均值的抽样分布逐渐趋于正分布逐渐趋于正态分布态分布中中中中心心心心极极极极限限限限定定定定理理理理:设设从从均均值值为为,方方差差为为 2 2的的一一个个任任意意总总体体中中抽抽取取容容量量为为n n的的样样本本,当当n n充充分分大大时时,样样本本均均值值的的抽抽样分布近似服从均值为样分布近似服从均值为、方差为方差为 2

15、2/n n的正态分布的正态分布一个任意分一个任意分布的总体布的总体x x中心极限定理(central limit theorem)x x 的的的的分分分分布布布布趋趋趋趋于于于于正正正正态态态态分分分分布布布布的过程的过程的过程的过程样本均值的抽样分布与中心极限定理 =50=50=50 =10=10=10X X X总体分布总体分布总体分布总体分布总体分布总体分布n n=4=4抽样分布抽样分布抽样分布抽样分布抽样分布抽样分布xn n=16=16当当总总体体服服从从正正态态分分布布N N(,2 2)时时,来来自自该该总总体体的的所所有有容容量量为为n n的的样样本本的的均均值值 x x也也服服从从

16、正正态态分分布布,x x 的的数数学学期望为期望为,方差为方差为 2 2/n n。即即 x xN N(,2 2/n n)定理定理1:(1:(Levy-LindebergLevy-Lindeberg极限定理极限定理)独立同分布独立同分布的中心极限定理的中心极限定理 设是独立同分布的随机变量序列,设是独立同分布的随机变量序列,且且均存在,则均存在,则 ,有,有中心极限定理(central limit theorem)该定理也可改写为:该定理也可改写为:,有,有中心极限定理表明:在相当一般的条件下,当独立随机变量中心极限定理表明:在相当一般的条件下,当独立随机变量的个数增加时,其和的分布趋于正态分布

17、。因此,只要和的个数增加时,其和的分布趋于正态分布。因此,只要和式中加项的个数充分大,就可以不必考虑和式中的随机变式中加项的个数充分大,就可以不必考虑和式中的随机变量服从什么分布,都可以用正态分布来近似,量服从什么分布,都可以用正态分布来近似,当当样本容量足够样本容量足够大时大时(n n 30)30),样本均值的抽样样本均值的抽样分布逐渐趋于正分布逐渐趋于正态分布态分布根根根根据据据据中中中中心心心心极极极极限限限限定定定定理理理理,设设设设从从从从均均均均值值值值为为为为 ,方方方方差差差差为为为为 2 2 2 2的的的的一一一一个个个个任任任任意意意意总总总总体体体体中中中中抽抽抽抽取取取

18、取容容容容量量量量为为为为n n n n的的的的样样样样本本本本,当当当当n n n n充充充充分分分分大大大大时时时时,样样样样本本本本均均均均值值值值的的的的抽抽抽抽样样样样分分分分布布布布近近近近似似似似服服服服从从从从均均均均值值值值为为为为、方方方方差差差差为为为为2 2 2 2/n n n n的的的的正正正正态态态态分分分分布布布布一个任意分一个任意分布的总体布的总体x x(De Moivre-Laplace极限定理)极限定理)(定理定理1的特殊情形的特殊情形)设设 是是n重重Bernoulli试验中成功的次数,试验中成功的次数,已知每次试验成功的概率为已知每次试验成功的概率为 ,

19、则对,则对 有有 该定理也可改写为:该定理也可改写为:,有,有中心极限定理(central limit theorem)x x 的的的的分分分分布布布布趋趋趋趋于于于于正正正正态态态态分分分分布布布布的过程的过程的过程的过程抽样分布与总体分布的关系抽样分布与总体分布的关系总体分布总体分布总体分布总体分布正态分布正态分布非正态分布非正态分布大样本大样本小样本小样本正态分布正态分布正态分布正态分布非正态分布非正态分布随机误差项主要包括下列因素的影响:随机误差项主要包括下列因素的影响:1)在解释变量中被忽略的因素的影响;2)变量观测值的观测误差的影响;3)模型关系的设定误差的影响;4)其它随机因素的

20、影响。产生并设计随机误差项的主要原因:产生并设计随机误差项的主要原因:1)理论的含糊性;2)数据的欠缺;3)节省原则。四、样本回归函数(四、样本回归函数(SRF)问题:问题:能从一次抽样中获得总体的近似的信息吗?如果可以,如何从抽样中获得总体的近似信息?问:能否从该样本估计总体回归函数PRF?回答:能 例例2.2:在例2.1的总体中有如下一个样本,总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一个样本。核样本的散点图散点图(scatter diagram):样本散点图近似于一条直线,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。该线称为样本回归

21、线样本回归线(sample regression lines)。)。记样本回归线的函数形式为:称为样本回归函数样本回归函数(sample regression function,SRF)。这里将样本回归线样本回归线看成总体回归线总体回归线的近似替代则 注意:注意:样本回归函数的随机形式样本回归函数的随机形式/样本回归模型样本回归模型:同样地,样本回归函数也有如下的随机形式:由于方程中引入了随机项,成为计量经济模型,因此也称为样本回归模型样本回归模型(sample regression model)。回回归归分分析析的的主主要要目目的的:根据样本回归函数SRF,估计总体回归函数PRF。注意:注意:这里PRF可能永远无法知道。即,根据 估计

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁