《人教版高一数学必修二第二章2.3.1-直线与平面垂直的性质课件.ppt》由会员分享,可在线阅读,更多相关《人教版高一数学必修二第二章2.3.1-直线与平面垂直的性质课件.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学高一数学 必修必修21.1.进一步巩固线面垂直的判定;进一步巩固线面垂直的判定;学习目标:学习目标:2.3 直线、平面垂直的判直线、平面垂直的判定与性质定与性质2.3.1(2)2.3.1(2)直线与平面垂直线与平面垂直的性质直的性质2.2.掌握直线与平面垂直的性质定理及其应用掌握直线与平面垂直的性质定理及其应用.“直线与平面垂直直线与平面垂直”的判定方法有几种:的判定方法有几种:知识回顾知识回顾方法一:定义法方法一:定义法:方法三:方法三:方法二:定理法(判定定理)方法二:定理法(判定定理)过空间一点有几条直线和已知平面垂直?过空间一点有几条直线和已知平面垂直?想一想想一想答:答:有且
2、只有一条有且只有一条.点点A A到平面到平面 的距离的距离.B知识准备知识准备 Aa过空间一点有几个平面与已知直线垂直?过空间一点有几个平面与已知直线垂直?aA答:答:有且只有一个有且只有一个 1.如果两条平行直线中的一条垂直于一个平面,那如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面;么另一条也垂直于这个平面;2.过空间一点有且只有一条直线和已知平面垂直过空间一点有且只有一条直线和已知平面垂直;3.过空间一点有且只有一个平面与已知直线垂直过空间一点有且只有一个平面与已知直线垂直.形成结论形成结论想一想想一想该结论正该结论正确吗?确吗?对于命题:对于命题:知识新授知识新授
3、如果两条直线同时垂直于一个平面,那么如果两条直线同时垂直于一个平面,那么 这两条直线平行这两条直线平行.直线与平面垂直的性质定理直线与平面垂直的性质定理ab证明证明:假设假设b b不平行于不平行于a,a,反反证证法法abO O,如图所示,如图所示,例例1.1.已知已知:于于于于求证求证:知识运用知识运用例题例题2.已知已知求证:求证:1.在直线在直线 上任取一点上任取一点A,过,过A作直线作直线 垂直于平面垂直于平面 ,设,设 确定平面确定平面 ,提示:提示:2.利用利用“在同一平面内垂直同一直线的两条直线互相平行在同一平面内垂直同一直线的两条直线互相平行”.A AB如果一条直线和一个平面平行
4、如果一条直线和一个平面平行,这条直线上任意一点这条直线上任意一点到这个平面的距离到这个平面的距离,叫叫这条这条 这个这个直线与直线与平面的距离平面的距离.例例3.已知已知:直线直线 /平面平面 .求证求证:直线直线 上各点到平面上各点到平面 的距离相等的距离相等.提示:只需提示:只需证明证明 是平行四边是平行四边形即可。形即可。线线垂直线线垂直线面垂直线面垂直线线平行线线平行定义定义,判定定理判定定理性性质质 定定理理例例1定义定义知识联系知识联系例4.P P证明证明:P P课堂小结课堂小结1.过空间一点有且只有一条直线和已知平面垂直;过空间一点有且只有一条直线和已知平面垂直;2.过空间一点有且只有一个平面与已知直线垂直;过空间一点有且只有一个平面与已知直线垂直;3.3.直线与平面垂直的性质定理:直线与平面垂直的性质定理:4.4.如果一条直线和一个平面平行如果一条直线和一个平面平行,那么这条直线上任那么这条直线上任意一点到这个平面的距离意一点到这个平面的距离,就叫做这条直线到该平面就叫做这条直线到该平面的距离的距离.