《2014届高三数学一轮复习-(基础知识+小题全取+考点通关+课时检测)4.3平面向量的数量积与平面向量应用举例ppt课件.ppt》由会员分享,可在线阅读,更多相关《2014届高三数学一轮复习-(基础知识+小题全取+考点通关+课时检测)4.3平面向量的数量积与平面向量应用举例ppt课件.ppt(59页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、知知识识能否能否忆忆起起 一、两个向量的一、两个向量的夹夹角角1夹夹角的定角的定义义:非零非零 0或或0,2射影的定义:射影的定义:设设是是a与与b的夹角,则的夹角,则 叫作向量叫作向量b在在a方向上方向上的射影的射影 叫作叫作a在在b方向上的射影方向上的射影 射影是一个实数,不是线段的长度,也不是向量射影是一个实数,不是线段的长度,也不是向量当当 时,它是正值;当时,它是正值;当 时,它是负值;时,它是负值;当当90时,它是时,它是0.|b|cos|a|cos 为锐角为锐角为钝角为钝角 3平面向量数量积的定义:平面向量数量积的定义:已知两个向量已知两个向量a和和b,它们的夹角为,它们的夹角为
2、,把,把 叫作叫作a与与b的数量积的数量积(或内积或内积),记作,记作 .4数量积的几何意义:数量积的几何意义:a与与b的数量积等于的数量积等于 的的乘积,或乘积,或 的乘积的乘积 5数量积的物理意义:数量积的物理意义:力对物体做功,就是力对物体做功,就是 .|a|b|cos aba的长度的长度|a|与与b在在a方向上射影方向上射影|b|cos b的长度的长度|b|与与a在在b方向上射影方向上射影|a|cos 力力F与其作用下物体的位移与其作用下物体的位移s的数量积的数量积Fs二、向量数量二、向量数量积积的性的性质质1如果如果e是是单单位向量,位向量,则则aeea|a|cos(为为a与与e的的
3、夹夹角角)2ab .4cos .(为为a与与b的夹角的夹角)5|ab|a|b|.ab0|a|2三、数量积的运算律三、数量积的运算律1交换律:交换律:abba.2分配律:分配律:(ab)c .3对对R,(ab)acbc(a)ba(b)四、数量四、数量积积的坐的坐标标表示表示设设a(a1,a2),b(b1,b2),则则:1ab .2ab.3|a|.a1b1a2b2a1b1a2b20小小题题能否全取能否全取1已知向量已知向量a,b和和实实数数,下列,下列选项选项中中错误错误的是的是 ()A|a|B|ab|a|b|C(ab)ab D|ab|a|b|解析:解析:|ab|a|b|cos|,只有,只有a与与
4、b共共线时线时,才有,才有|ab|a|b|,可知,可知B是是错误错误的的答案:答案:B2已知已知|a|4,|b|3,a与与b的的夹夹角角为为120,则则b在在a方方向上的投影向上的投影为为()答案:答案:D答案:答案:B3(2012重庆高考重庆高考)设设xR,向量,向量a(x,1),b(1,2),且且ab,则,则|ab|()5已知已知|a|1,|b|6,a(ba)2,则向量,则向量a与与b的夹的夹 角角的大小为的大小为_.1.对对两向量两向量夹夹角的理解角的理解(1)两向量的两向量的夹夹角是指当两向量的起点相同角是指当两向量的起点相同时时,表示,表示两向量的有向两向量的有向线线段所形成的角,若
5、起点不同,段所形成的角,若起点不同,应应通通过过移移动动,使其起点相同,再,使其起点相同,再观观察察夹夹角角(2)两向量两向量夹夹角的范角的范围为围为0,特,特别别当两向量共当两向量共线线且同向且同向时时,其,其夹夹角角为为0,共,共线线且反向且反向时时,其,其夹夹角角为为.(3)在利用向量的数量在利用向量的数量积积求两向量的求两向量的夹夹角角时时,一定要,一定要注意两向量注意两向量夹夹角的范角的范围围2向量运算与数量运算的区向量运算与数量运算的区别别(1)若若a,bR,且,且ab0,则则有有a0或或b0,但,但ab0却不能得出却不能得出a0或或b0.(2)若若a,b,cR,且,且a0,则则由
6、由abac可得可得bc,但由但由abac及及a0却不能推出却不能推出bc.(3)若若a,b,cR,则则a(bc)(ab)c(结结合律合律)成立,但成立,但对对于向量于向量a,b,c,而,而(ab)c与与a(bc)一般是不相等的,一般是不相等的,向量的数量向量的数量积积是不是不满满足足结结合律的合律的(4)若若a,bR,则则|ab|a|b|,但,但对对于向量于向量a,b,却有却有|ab|a|b|,等号当且,等号当且仅仅当当ab时时成立成立平面向量数量积的运算平面向量数量积的运算 例例1(1)若向量若向量a(1,1),b(2,5),c(3,x)满满足条件足条件(8ab)c30,则则x ()A6B5
7、 C4 D3 答案答案(1)C(2)18平面向量数量平面向量数量积问题积问题的的类类型及求法型及求法(1)已知向量已知向量a,b的模及的模及夹夹角角,利用公式,利用公式ab|a|b|cos 求解;求解;(2)已知向量已知向量a,b的坐的坐标标,利用数量,利用数量积积的坐的坐标标形式求形式求解解答案答案:B答案:答案:6两平面向量的两平面向量的夹夹角与垂直角与垂直例例2(1)(2012福州质检福州质检)已知已知|a|1,|b|2,a与与b的的夹夹角角为为120,abc0,则则a与与c的的夹夹角角为为 ()A150B90C60 D30(2)(2011新课标全国卷新课标全国卷)已知已知a与与b为为两
8、个不共两个不共线线的的单单位向量,位向量,k为实为实数,若向量数,若向量ab与向量与向量kab垂直,垂直,则则k_.自主解答自主解答(1)ab12cos 1201,cab,aca(ab)aaab110,ac.a与与c的的夹夹角角为为90.(2)a与与b是不共是不共线线的的单单位向量,位向量,|a|b|1.又又kab与与ab垂直,垂直,(ab)(kab)0,即即ka2kababb20.k1kabab0.即即k1kcos cos 0(为为a与与b的的夹夹角角)(k1)(1cos)0.又又a与与b不共不共线线,cos 1.k1.答案答案(1)B(2)1 若本例若本例(1)条件条件变为变为非零向量非零
9、向量a,b,c满满足足|a|b|c|,abc,试试求求a与与b的的夹夹角角1求两非零向量的求两非零向量的夹夹角角时时要注意:要注意:(1)向量的数量向量的数量积积不不满满足足结结合律;合律;(2)数量数量积积大于大于0说说明不共明不共线线的两向量的的两向量的夹夹角角为锐为锐角,角,数量数量积积等于等于0说说明两向量的明两向量的夹夹角角为为直角,数量直角,数量积积小于小于0且两向量不能共且两向量不能共线时线时两向量的两向量的夹夹角就是角就是钝钝角角2当当a,b是非坐是非坐标标形式形式时时,求,求a与与b的的夹夹角,需求角,需求得得ab及及|a|,|b|或得出它或得出它们们的关系的关系2(1)若若
10、a(1,2),b(1,1),且,且a与与ab的的夹夹角角为锐为锐角,角,则实则实数数的取的取值值范范围围是是_ (2)(2012豫南九校联考豫南九校联考)已知平面向量已知平面向量a,b满满足足|a|1,|b|2,a与与b的的夹夹角角为为60,则则“m1”是是“(amb)a”的的 ()A充分不必要条件充分不必要条件 B必要不充分条件必要不充分条件 C充要条件充要条件 D既不充分也不必要条件既不充分也不必要条件平面向量的模平面向量的模答案答案D利用数量积求长度问题是数量积的重要应用,要掌利用数量积求长度问题是数量积的重要应用,要掌握此类问题的处理方法:握此类问题的处理方法:(1)|a|2a2aa;
11、(2)|ab|2(ab)2a22abb2;平面向量数量平面向量数量积积的的综综合合应应用用(1)求求f(x)的周期和的周期和单调递单调递减区减区间间;向量与其它知识结合,题目新颖而精巧,既符合考向量与其它知识结合,题目新颖而精巧,既符合考查知识的查知识的“交汇处交汇处”的命题要求,又加强了对双基覆盖面的命题要求,又加强了对双基覆盖面的考查,特别是通过向量坐标表示的运算,利用解决平的考查,特别是通过向量坐标表示的运算,利用解决平行、垂直、夹角和距离等问题的同时,把问题转化为新行、垂直、夹角和距离等问题的同时,把问题转化为新的函数、三角或几何问题的函数、三角或几何问题4(1)(2012朔州调研朔州
12、调研)质点受到平面上的三个力质点受到平面上的三个力F1,F2,F3(单位:牛顿单位:牛顿)的作用而处于平衡状态,已知的作用而处于平衡状态,已知F1,F2 成成60角,且角,且F1,F2的大小分别为的大小分别为2和和4,则,则F3的大小的大小 为为()A直角三角形直角三角形 B等腰三角形等腰三角形C等边三角形等边三角形 D等腰直角三角形等腰直角三角形答案答案:(:(1)A (2)B 平面向量兼具形、数的双重性,一般可以从两个方面思平面向量兼具形、数的双重性,一般可以从两个方面思考,一是利用考,一是利用“数数”的特征,我的特征,我们们可以从向量的可以从向量的线线性运算、性运算、数量数量积积、基底分
13、解及坐、基底分解及坐标标运算等方面思考,将运算等方面思考,将问题转问题转化化为为代数中的有关代数中的有关问题问题来解决;二是利用其来解决;二是利用其“形形”的特征,可以的特征,可以通通过过向量的几何意向量的几何意义义以及向量的基本运算将其以及向量的基本运算将其转转化化为为平面平面几何中的几何中的问题问题,直接利用平面几何中的相关,直接利用平面几何中的相关结论结论得到得到结结果果.A2B4C5 D101特殊化法特殊化法该题是一道选择题,可以根据选项的特征选择方该题是一道选择题,可以根据选项的特征选择方法,很明显该题的四个选项都是定值,所以可以利用法,很明显该题的四个选项都是定值,所以可以利用最特
14、殊的等腰直角三角形中的基本运算来验证结果最特殊的等腰直角三角形中的基本运算来验证结果答案答案D题后悟道题后悟道该题中四个选项都是定值是选择特殊该题中四个选项都是定值是选择特殊化方法验证的前提,如果该题中出现化方法验证的前提,如果该题中出现“与两直角边的长与两直角边的长度有关度有关”,则该题就不能采用特殊化法进行验证了,则该题就不能采用特殊化法进行验证了2向量基底法向量基底法答案答案D3坐标法坐标法我们可以利用相互垂直的两腰所在直线建立平面直我们可以利用相互垂直的两腰所在直线建立平面直角坐标系,这样就可以根据已知条件求出相应点的坐标,角坐标系,这样就可以根据已知条件求出相应点的坐标,再利用平面向
15、量的坐标运算进行验证再利用平面向量的坐标运算进行验证答案答案D题后悟道题后悟道利用坐标计算向量模的问题,是最常利用坐标计算向量模的问题,是最常用有效的方法,建立坐标系时,应注意利用图形特点用有效的方法,建立坐标系时,应注意利用图形特点以上根据向量数与形的基本特征,结合题目中的选以上根据向量数与形的基本特征,结合题目中的选项以及直角三角形的条件,从三个方面提出了不同的解项以及直角三角形的条件,从三个方面提出了不同的解法,涉及向量的基本运算、坐标运算等相关知识,在寻法,涉及向量的基本运算、坐标运算等相关知识,在寻找解题思路时,应牢牢把握向量的这两个基本特征找解题思路时,应牢牢把握向量的这两个基本特征答案:答案:11 教师备选题(给有能力的学生加餐)(给有能力的学生加餐)解题训练要高效解题训练要高效见见“课时跟踪检课时跟踪检测(二十八)测(二十八)”答案:答案:D2(2012郑州质检郑州质检)若向量若向量a(x1,2),b(4,y)相相互垂互垂直,则直,则9x3y的最小值为的最小值为 ()答案:答案:D答案:答案:D答案:答案:2,5