《2021-2022学年河南省驻马店市正阳县达标名校中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2021-2022学年河南省驻马店市正阳县达标名校中考一模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题
2、目要求的)1在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3B4C5D62如图,在ABCD中,AB1,AC4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F若ACAB,则FD的长为()A2B3C4D63在ABC中,若=0,则C的度数是( )A45B60C75D1054如图,DE是线段AB的中垂线,则点A到BC的距离是A4BC5D65近似数精确到( )A十分位B个位C十位D百位6下列计算正确的是( )A3a26a2=3B(2a)(a)=2a2C10a102a2=5a5D(a3)2=a67方程的解为()Ax=1Bx=1Cx=2Dx=38如图,在中,分别以点和
3、点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )ABCD9如图,在ABC中,C=90,B=10,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SACD:SACB=1:1其中正确的有()A只有B只有C只有D10如图,AB是O的直径,CD是O的弦,ACD=30,则BAD为( )A30B50C60D7011如图所示,直线ab,1=35,2=90,则3的度数为()A125B135C145D15
4、512如图,半O的半径为2,点P是O直径AB延长线上的一点,PT切O于点T,M是OP的中点,射线TM与半O交于点C若P20,则图中阴影部分的面积为()A1+B1+C2sin20+D二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,、分别为ABC的边、延长线上的点,且DEBC如果,CE=16,那么AE的长为_ 14已知一个斜坡的坡度,那么该斜坡的坡角的度数是_15已知点P(2,3)在一次函数y2xm的图象上,则m_16如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15方向上,此时轮船与小岛C的距离为_海
5、里.(结果保留根号)17计算:=_.18满足的整数x的值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率20(6分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,求末端操作器节点到地面直线的距离.(结果保留根号)21
6、(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出,;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?22(8分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不
7、完整)请根据统计图中的信息解答下列问题:本次抽查的样本容量是;在扇形统计图中,“主动质疑”对应的圆心角为度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?23(8分)佳佳向探究一元三次方程x3+2x2x2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k0)的解,二次函数y=ax2+bx+c(a0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a0)的解,如:二次函数y=x22x3的图象与x轴的交点为(1,0)和(3,0),交点的横
8、坐标1和3即为x22x3=0的解根据以上方程与函数的关系,如果我们直到函数y=x3+2x2x2的图象与x轴交点的横坐标,即可知方程x3+2x2x2=0的解佳佳为了解函数y=x3+2x2x2的图象,通过描点法画出函数的图象x321012y80m2012(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有 个,分别为 ;(3)借助函数的图象,直接写出不等式x3+2x2x+2的解集24(10分)问题:将菱形的面积五等分小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题如图,点O是菱形ABCD的对角线交点,AB5,下面是小红将菱形ABCD面积五等分的操作与
9、证明思路,请补充完整(1)在AB边上取点E,使AE4,连接OA,OE;(2)在BC边上取点F,使BF_,连接OF;(3)在CD边上取点G,使CG_,连接OG;(4)在DA边上取点H,使DH_,连接OH由于AE_可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA25(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方
10、式所对应的圆心角为 度若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?26(12分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了_名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.27(12分)解方程
11、式:- 3 = 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】解:作OCAB于C,连结OA,如图OCAB,AC=BC=AB=8=1在RtAOC中,OA=5,OC=,即圆心O到AB的距离为2故选A2、C【解析】利用平行四边形的性质得出ADFEBF,得出=,再根据勾股定理求出BO的长,进而得出答案【详解】解:在ABCD中,对角线AC、BD相交于O,BO=DO,AO=OC,ADBC,ADFEBF,=,AC=4,AO=2,AB=1,ACAB,BO=3,BD=6,E是BC的中点,=,BF=2, FD=4.故选C.【点睛】本题
12、考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.3、C【解析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出C的度数【详解】由题意,得cosA=,tanB=1,A=60,B=45,C=180-A-B=180-60-45=75故选C4、A【解析】作于利用直角三角形30度角的性质即可解决问题【详解】解:作于H垂直平分线段AB,故选A【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型5、C【解析】根据近
13、似数的精确度:近似数5.0102精确到十位故选C考点:近似数和有效数字6、B【解析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a26a2=3a2,不正确;选项B,单项式乘单项式的运算可得(2a)(a)=2a2,正确;选项C,根据整式的除法可得10a102a2=5a8,不正确;选项D,根据幂的乘方可得(a3)2=a6,不正确故答案选B考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式7、B【解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】方程的两边同乘(x3)(x+1),得(x2) (x+1)=x(
14、x3),解得x=1.检验:把x=1代入(x3)(x+1)=-40.原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.8、B【解析】根据题意可知DE是AC的垂直平分线,CD=DA即可得到DCE=A,而A和B互余可求出A,由三角形外角性质即可求出CDA的度数.【详解】解:DE是AC的垂直平分线,DA=DC,DCE=A,ACB=90,B=34,A=56,CDA=DCE+A=112,故选B【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型9、D【解
15、析】根据作图过程可判定AD是BAC的角平分线;利用角平分线的定义可推知CAD10,则由直角三角形的性质来求ADC的度数;利用等角对等边可以证得ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;利用10角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.【详解】根据作图过程可知AD是BAC的角平分线,正确;如图,在ABC中,C90,B10,CAB60,又AD是BAC的平分线,12CAB10,190260,即ADC60,正确;1B10,ADBD,点D在AB的中垂线上,正确;如图,在直角ACD中,210,CDAD,BCCDBDADADAD,SDACAC
16、CDACAD.SABCACBCACADACAD,SDAC:SABCACAD:ACAD1:1,正确.故选D.【点睛】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.10、C【解析】试题分析:连接BD,ACD=30,ABD=30,AB为直径,ADB=90,BAD=90ABD=60故选C考点:圆周角定理11、A【解析】分析:如图求出5即可解决问题详解:ab,1=4=35,2=90,4+5=90,5=55,3=180-5=125,故选:A点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问
17、题12、A【解析】连接OT、OC,可求得COM=30,作CHAP,垂足为H,则CH=1,于是,S阴影=SAOC+S扇形OCB,代入可得结论【详解】连接OT、OC,PT切O于点T,OTP=90,P=20,POT=70,M是OP的中点,TM=OM=PM,MTO=POT=70,OT=OC,MTO=OCT=70,OCT=180-270=40,COM=30,作CHAP,垂足为H,则CH=OC=1,S阴影=SAOC+S扇形OCB=OACH+=1+,故选A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问
18、题也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据DEBC,得到,再代入AC=11-AE,则可求AE长【详解】DEBC,CE=11,解得AE=1故答案为1【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键14、【解析】坡度=坡角的正切值,据此直接解答【详解】解:,坡角=30【点睛】此题主要考查学生对坡度及坡角的理解及掌握15、1【解析】根据待定系数法求得一次函数的解析式,解答即可【详解】解:一次函数y=2x-m的图象经过点P(2,3),3=4-m,解得m=1,故答案为:1.【点睛】此题主
19、要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式16、5 【解析】如图,作BHAC于H在RtABH中,求出BH,再在RtBCH中,利用等腰直角三角形的性质求出BC即可【详解】如图,作BHAC于H在RtABH中,AB=10海里,BAH=30,ABH=60,BH=AB=5(海里),在RtBCH中,CBH=C=45,BH=5(海里),BH=CH=5海里,CB=5(海里)故答案为:5【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题17、【解析】分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.详解:原式=.故
20、答案为:.点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.18、3,1【解析】直接得出23,15,进而得出答案【详解】解:23,15,的整数x的值是:3,1故答案为:3,1【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案
21、试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,两次摸出的球上的数字和为偶数的概率为:考点:列表法与树状图法20、()cm.【解析】作BGCD,垂足为G,BHAF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BGCD,垂足为G,BHAF,垂足为H,在中,BCD=60,BC=60cm,在中,BAF=45,AB=60cm,D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.21、(1)100,35;(2)补全图形,如图;(3)800人【
22、解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)被调查总人数为m=1010%=100人,用支付宝人数所占百分比n%= ,m=100,n=35.(2)网购人数为10015%=15人,微信人数所占百分比为,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为200040%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得
23、到必要的信息是解决问题的关键.22、 (1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为22440%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:36084560=54; (3)“讲解题目”的人数是:56084168224=84(人)(4)60000=18000(人),答:在课堂中能“独立思考”的学生约有18000人.23、(1)2;(2)3,2,或1或1(3)2x1或x1【解析】试题分析:(1)求出x=1时的函数值即可解决问题;利用描点法画出图象即可;(2)利用图象以及表格即可解决问题;(3)不等式x3+2x2x+2的解集,即为函
24、数y=x3+2x2x2的函数值大于2的自变量的取值范围,观察图象即可解决问题.试题解析:(1)由题意m=1+2+12=2函数图象如图所示(2)根据表格和图象可知,方程的解有3个,分别为2,或1或1(3)不等式x3+2x2x+2的解集,即为函数y=x3+2x2x2的函数值大于2的自变量的取值范围观察图象可知,2x1或x124、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA,进一步求得SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA即可【
25、详解】(1)在AB边上取点E,使AE4,连接OA,OE;(2)在BC边上取点F,使BF3,连接OF;(3)在CD边上取点G,使CG2,连接OG;(4)在DA边上取点H,使DH1,连接OH由于AEEBBFFCCGGDDHHA可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.25、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名【解析】分
26、析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名详解:(1)5628%=200,即本次一共调查了200名购买者;(2)D方式支付的有:20020%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360=108,(3)1600=928(名),答:使用A和B两种支付方式的购买者共有928
27、名点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答26、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所
28、以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.27、x=3【解析】先去分母,再解方程,然后验根.【详解】解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.【点睛】此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.