(完整版)小学数学奥数解题方法讲义40讲(四).doc

上传人:可****阿 文档编号:82376997 上传时间:2023-03-25 格式:DOC 页数:98 大小:717.51KB
返回 下载 相关 举报
(完整版)小学数学奥数解题方法讲义40讲(四).doc_第1页
第1页 / 共98页
(完整版)小学数学奥数解题方法讲义40讲(四).doc_第2页
第2页 / 共98页
点击查看更多>>
资源描述

《(完整版)小学数学奥数解题方法讲义40讲(四).doc》由会员分享,可在线阅读,更多相关《(完整版)小学数学奥数解题方法讲义40讲(四).doc(98页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、(一) (二)第一讲 观察法第十一讲 份数法第二讲 尝试法第十二讲 消元法第三讲 列举法第十三讲 比较法第四讲 综合法第十四讲 演示法第五讲 分析法第第十五讲 列表法第六讲 分析-综合法第十六讲 倍比法第七讲 归一法第十七讲 逆推法第八讲 归总法第十八讲 图解法第九讲 分解法第十九讲 对应法第十讲 分组法第二十讲 集合法(三) (四)第二十一讲 守恒法第三十一讲 分解质因数法第二十二讲 两差法第三十二讲 最大公约数法第二十三讲 比例法第三十三讲 最小公倍数法第二十四讲 转换法第三十四讲 解平均数问题的方法第二十五讲 假设法第三十五讲 解行程问题的方法第二十六讲 设数法第三十六讲 解工程问题的方

2、法第二十七讲 代数法第三十七讲、解流水问题的方法第二十八讲 联想法第三十八讲 解植树问题的方法第二十九讲 直接法第三十九讲 解时钟问题的方法第三十讲 四方阵法第四十讲 几何变换法第三十一讲 分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。例1 一块正方体木块,体积是1331立方厘米。这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:

3、1331=111111答:这块正方体木块的棱长是11厘米。例2 一个数的平方等于324,求这个数。(适于六年级程度)解:把324分解质因数:324= 223333=(233)(233)=1818答:这个数是18。例3 相邻两个自然数的最小公倍数是462,求这两个数。(适于六年级程度)解:把462分解质因数:462=23711=(37)(211)=2122答:这两个数是21和22。*例4 ABCD=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。求ABC代表什么数?(适于六年级程度)解:因为ABCD=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质

4、因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。1673=2397答:ABC代表239。例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。2304=2222222233=(22223)(22223)=4848正方形的边长是48米。这块田地的周长是:484=192(米)答略。*例6 有3250个桔子,平均分给一个幼儿园的小朋友,剩下10个。已知每一名小朋友分得的桔子数接近40个。求这个幼儿园有多少名小朋友?(适于六年级程度)解:3

5、250-10=3240(个)把3240分解质因数:3240=23345接近40的数有36、37、38、39这些数中36=2232,所以只有36是3240的约数。23345(2232)=2325=90答:这个幼儿园有90名小朋友。*例7 105的约数共有几个?(适于六年级程度)解:求一个给定的自然数的约数的个数,可先将这个数分解质因数,然后按一个质数、两个质数、三个质数的乘积逐一由小到大写出,再求出它的个数即可。因为,105=357,所以,含有一个质数的约数有1、3、5、7共4个;含有两个质数的乘积的约数有35、37、57共3个;含有三个质数的乘积的约数有357共1个。所以,105的约数共有4+

6、3+1=8个。答略。*例8 把15、22、30、35、39、44、52、77、91这九个数平均分成三组,使每组三个数的乘积都相等。这三组数分别是多少?(适于六年级程度)解:将这九个数分别分解质因数:15=3522=21130=23535=5739=31344=221152=221377=71191=713观察上面九个数的质因数,不难看出,九个数的质因数中共有六个2,三个3,三个5,三个7,三个11,三个13,这样每组中三个数应包括的质因数有两个2,一个3,一个5,一个7,一个11和一个13。由以上观察分析可得这三组数分别是:15、52和77;22、30和91;35、39和44。答略。*例9 有

7、四个学生,他们的年龄恰好一个比一个大一岁,他们的年龄数相乘的积是5040。四个学生的年龄分别是几岁?(适于六年级程度)解:把5040分解质因数:5040=22223357由于四个学生的年龄一个比一个大1岁,所以他们的年龄数就是四个连续自然数。用八个质因数表示四个连续自然数是:7,222,33,25即四个学生的年龄分别是7岁、8岁、9岁、10岁。答略。*例10 在等式35( )8127=718( )162的两个括号中,填上适当的最小的数。(适于六年级程度)解:将已知等式的两边分解质因数,得:5377( )=22367( )把上面的等式化简,得:15( )=4( )所以,在左边的括号内填4,在右边

8、的括号内填15。15(4)=4(15)答略。*例11 把84名学生分成人数相等的小组(每组最少2人),一共有几种分法?(适于六年级程度)解:把84分解质因数:84=2237除了1和84外,84的约数有:2,3,7,22=4,23=6,27=14,37=21,223=12,227=28,237=42。下面可根据不同的约数进行分组。842=42(组),843=28(组),844=21(组),846=14(组),847=12(组),8412=7(组),8414=6(组),8421=4(组),8428=3(组),8442=2(组)。因此每组2人分42组;每组3人分28组;每组4人分21组;每组6人分1

9、4组;每组7人分12组;每组12人分7组;每组14人分6组;每组21人分4组;每组28人分3组;每组42人分2组。一共有10种分法。答略。*例12 把14、30、33、75、143、169、4445、4953这八个数分成两组,每组四个数,要使各组数中四个数的乘积相等。求这两组数。(适于六年级程度)解:要使两组数的乘积相等,这两组乘积中的每个因数不必相同,但这些因数经分解质因数,它们所含有的质因数一定相同。因此,首先应把八个数分解质因数。14=27 143=111330=235 169=131333=311 4445=5712775=355 4953=313127在上面的质因式中,质因数2、7、

10、11、127各有2个,质因数3、5、13各有4个。在把题中的八个数分为两组时,应使每一组中的质因数2、7、11、127各有1个,质因数3、5、13各有2个。按这个要求每一组四个数的积应是:271112733551313因为,(27)(355)(1113)(313127)=14751434953,根据接下来为“14、75、143、4953”正符合题意,因此,要求的一组数是14、75、143、4953,另一组的四个数是:30、33、169、4445。答略。*例13 一个长方形的面积是315平方厘米,长比宽多6厘米。求这个长方形的长和宽。(适于五年级程度)解:设长方形的宽为x厘米,则长为(x+6)厘

11、米。根据题意列方程,得:x(x+6)= 315x(x+6)=3357=(35)(37)x(x+6)=1521x(x+6)=15(15+6)x=15x+6=21答:这个长方形的长是21厘米,宽是15厘米。*例14 已知三个连续自然数的积为210,求这三个自然数各是多少?(适于五年级程度)解:设这三个连续自然数分别是x-1,x,x+1,根据题意列方程,得:(x-1)x(x+1)=210=2110=3725=567比较方程两边的因数,得:x=6,x-1=5,x+1=7。答:这三个连续自然数分别是5、6、7。*例15 将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比

12、丙数的3倍多12,求甲、乙、丙各是几?(适于六年级程度)解:把1440分解质因数:1440= 121210=22322325=(222)(33)(225)=8920如果甲、乙二数分别是8、9,丙数是20,则:89=72,203+12=72正符合题中条件。答:甲、乙、丙三个数分别是8、9、20。*例16 一个星期天的早晨,母亲对孩子们说:“你们是否发现在你们中间,大哥的年龄等于两个弟弟年龄之和?”儿子们齐声回答说:“是的,我们的年龄和您年龄的乘积,等于您儿子人数的立方乘以1000加上您儿子人数的平方乘以10。”从这次谈话中,你能否确定母亲在多大时,才生下第二个儿子?(适于六年级程度)解:由题意可

13、知,母亲有三个儿子。母亲的年龄与三个儿子年龄的乘积等于:331000+3210=27090把27090分解质因数:27090=4375322根据“大哥的年龄等于两个弟弟年龄之和”,重新组合上面的质因式得:431495这个质因式中14就是9与5之和。所以母亲43岁,大儿子14岁,二儿子9岁,小儿子5岁。43-9=34(岁)答:母亲在34岁时生下第二个儿子。第三十二讲 最大公约数法通过计算出几个数的最大公约数来解题的方法,叫做最大公约数法。 例1 甲班有42名学生,乙班有48名学生,现在要把这两个班的学生平均分成若干个小组,并且使每个小组都是同一个班的学生。每个小组最多有多少名学生?(适于六年级程

14、度)解:要使每个小组都是同一个班的学生,并且要使每个小组的人数尽可能多,就要求出42和48的最大公约数:23=642和48的最大公约数是6。答:每个小组最多能有6名学生。例2 有一张长150厘米、宽60厘米的长方形纸板,要把它分割成若干个面积最大,井已面积相等的正方形。能分割成多少个正方形?(适于六年级程度)解:因为分割成的正方形的面积最大,并且面积相等,所以正方形的边长应是150和60的最大公约数。求出150和60的最大公约数:235=30150和60的最大公约数是30,即正方形的边长是30厘米。看上面的短除式中,150、60除以2之后,再除以3、5,最后的商是5和2。这说明,当正方形的边长

15、是30厘米时,长方形的长150厘米中含有5个30厘米,宽60厘米中含有2个30厘米。所以,这个长方形能分割成正方形:52=10(个)答:能分割成10个正方形。例3 有一个长方体的方木,长是3.25米,宽是1.75米,厚是0.75米。如果将这块方木截成体积相等的小正方体木块,并使每个小正方体木块尽可能大。小木块的棱长是多少?可以截成多少块这样的小木块?(适于六年级程度)解:3.25米=325厘米,1.75米=175厘米,0.75米=75厘米,此题实际是求325、175和75的最大公约数。55=25325、175和75的最大公约数是25,即小正方体木块的棱长是25厘米。因为75、175、325除以

16、5得商15、35、65,15、35、65再除以5,最后的商是3、7、13,而小正方体木块的棱长是25厘米,所以,在75厘米中包含3个25厘米,在175厘米中包含7个25厘米,在325厘米中包含13个25厘米。可以截成棱长是25厘米的小木块:3713=273(块)答:小正方体木块的棱长是25厘米,可以截成这样大的正方体273块。例4 有三根绳子,第一根长45米,第二根长60米,第三根长75米。现在要把三根长绳截成长度相等的小段。每段最长是多少米?一共可以截成多少段?(适于六年级程度)解:此题实际是求三条绳子长度的最大公约数。35=1545、60和75的最大公约数是15,即每一小段绳子最长15米。

17、因为短除式中最后的商是3、4、5,所以在把绳子截成15米这么长时,45米长的绳子可以截成3段,60米长的绳子可以截成4段,75米长的绳子可以截成5段。所以有:3+4+5=12(段)答:每段最长15米,一共可以截成12段。例5 某校有男生234人,女生146人,把男、女生分别分成人数相等的若干组后,男、女生各剩3人。要使组数最少,每组应是多少人?能分成多少组?(适于六年级程度)解:因为男、女生各剩3人,所以进入各组的男、女生的人数分别是:234-3=231(人)男146-3=143(人)女要使组数最少,每一组的人数应当是最多的,即每一组的人数应当是231人和143人的最大公约数。231、143的

18、最大公约数是11,即每一组是11人。因为231、143除以11时,商是21和13,所以男生可以分为21组,女生可以分为13组。21+13=34(组)答:每一组应是11人,能分成34组。例6 把330个红玻璃球和360个绿玻璃球分别装在小盒子里,要使每一个盒里玻璃球的个数相同且装得最多。一共要装多少个小盒?(适于六年级程度)解:求一共可以装多少个盒子,要知道红、绿各装多少盒。要将红、绿分别装在盒子中,且每个盒子里球的个数相同,装的最多,则每盒球的个数必定是330和360的最大公约数。235=30330和360的最大公约数是30,即每盒装30个球。33030=11(盒)红球装11盒36030=12

19、(盒)绿球装12盒11+12=23(盒)共装23盒答略。例7 一个数除40不足2,除68也不足2。这个数最大是多少?(适于六年级程度)解:“一个数除40不足2,除68也不足2”的意思是:40被这个数除,不能整除,要是在40之上加上2,才能被这个数整除;68被这个数除,也不能整除,要是在68之上加上2,才能被这个数整除。看来,能被这个数整除的数是:40+2=42,68+2=70。这个数是42和70的公约数,而且是最大的公约数。27=14答:这个数最大是14。例8 李明昨天卖了三筐白菜,每筐白菜的重量都是整千克。第一筐卖了1.04元,第二筐卖了1.95元,第三筐卖了2.34元。每1千克白菜的价钱都

20、是按当地市场规定的价格卖的。问三筐白菜各是多少千克,李明一共卖了多少千克白菜?(适于六年级程度)解:三筐白菜的钱数分别是104分、195分、234分,每千克白菜的价钱一定是这三个数的公约数。把104、195、234分别分解质因数:104=2313195=3513234=23213104、195、234最大的公有的质因数是13,所以104、195、234的最大公约数是13,即每千克白菜的价钱是0.13元。1.040.13=8(千克)第一筐1.950.13=15(千克)第二筐2.340.13=18(千克)第三筐8+15+18=41(千克)答:第一、二、三筐白菜的重量分别是8千克、15千克、18千克

21、,李明一共卖了41千克白菜。例9 一个两位数除472,余数是17。这个两位数是多少?(适于六年级程度)解:因为这个“两位数除472,余数是17”,所以,472-17=455,455一定能被这个两位数整除。455的约数有1、5、7、13、35、65、91和455,这些约数中35、65和91大于17,并且是两位数,所以这个两位数可以是35或65,也可以是91。答略。例10 把图32-1的铁板用点焊的方式焊在一个大的铁制部件上,要使每个角必须有一个焊点,并且各边焊点间的距离相等。最少要焊多少个点?(单位:厘米)(适于六年级程度)解:要求焊点最少,焊点间距就要最大;要求每个角有一个焊点,焊点间距离相等

22、,焊点间距离就应是42厘米、24厘米、18厘米、36厘米的最大公约数。23=6它们的最大公约数是6,即焊点间距离为6厘米。焊点数为:7+4+3+6=20(个)按这个算法每个角上的焊点是两个,因为要求每一个角上要有一个焊点,所以,要从20个焊点中减4个焊点。20-4=16(个)答略。第三十三讲 最小公倍数法通过计算出几个数的最小公倍数,从而解答出问题的解题方法叫做最小公倍数法。 例1 用长36厘米,宽24厘米的长方形瓷砖铺一个正方形地面,最少需要多少块瓷砖?(适于六年级程度)解:因为求这个正方形地面所需要的长方形瓷砖最少,所以正方形的边长应是36、24的最小公倍数。22332=7236、24的最

23、小公倍数是72,即正方形的边长是72厘米。7236=27224=323=6(块)答:最少需要6块瓷砖。*例2 王光用长6厘米、宽4厘米、高3厘米的长方体木块拼最小的正方体模型。这个正方体模型的体积是多大?用多少块上面那样的长方体木块?(适于六年级程度)解:此题应先求正方体模型的棱长,这个棱长就是6、4和3的最小公倍数。232=126、4和3的最小公倍数是12,即正方体模型的棱长是12厘米。正方体模型的体积为:121212=1728(立方厘米)长方体木块的块数是:1728(643)=172872=24(块)答略。例3 有一个不足50人的班级,每12人分为一组余1人,每16人分为一组也余1人。这个

24、班级有多少人?(适于六年级程度)解:这个班的学生每12人分为一组余1人,每16人分为一组也余1人,这说明这个班的人数比12与16的公倍数(50以内)多1人。所以先求12与16的最小公倍数。2234=4812与16的最小公倍数是48。48+1=49(人)4950,正好符合题中全班不足50人的要求。答:这个班有49人。例4 某公共汽车站有三条线路通往不同的地方。第一条线路每隔8分钟发一次车;第二条线路每隔10分钟发一次车;第三条线路每隔12分钟发一次车。三条线路的汽车在同一时间发车以后,至少再经过多少分钟又在同一时间发车?(适于六年级程度)解:求三条线路的汽车在同一时间发车以后,至少再经过多少分钟

25、又在同一时间发车,就是要求出三条线路汽车发车时间间隔的最小公倍数,即8、10、12的最小公倍数。22253=120答:至少经过120分钟又在同一时间发车。例5 有一筐鸡蛋,4个4个地数余2个,5个5个地数余3个,6个6个地数余4个。这筐鸡蛋最少有多少个?(适于六年级程度)解:从题中的已知条件可以看出.不论是4个4个地数,还是5个5个地数、6个6个地数,筐中的鸡蛋数都是只差2个就正好是能被4、5、6整除的数。因为要求这筐鸡蛋最少是多少个,所以求出4、5、6的最小公倍数后再减去2,就得到鸡蛋的个数。2253=604、5、6的最小公倍数是60。60-2=58(个)答:这筐鸡蛋最少有58个。*例6 文

26、化路小学举行了一次智力竞赛。参加竞赛的人中,平均每15人有3个人得一等奖,每8人有2个人得二等奖,每12人有4个人得三等奖。参加这次竞赛的共有94人得奖。求有多少人参加了这次竞赛?得一、二、三等奖的各有多少人?(适于六年级程度)解:15、8和12的最小公倍数是120,参加这次竞赛的人数是120人。得一等奖的人数是:3(12015)=24(人)得二等奖的人数是:2(1208)=30(人)得三等奖的人数是:4(12012)=40(人)答略。*例7 有一个电子钟,每到整点响一次铃,每走9分钟亮一次灯。中午12点整时,电子钟既响铃又亮灯。求下一次既响铃又亮灯是几点钟?(适于六年级程度)解:每到整点响一

27、次铃,就是每到60分钟响一次铃。求间隔多长时间后,电子钟既响铃又亮灯,就是求60与9的最小公倍数。60与9的最小公倍数是180。18060=3(小时)由于是中午12点时既响铃又亮灯,所以下一次既响铃又亮灯是下午3点钟。答略。*例8 一个植树小组原计划在96米长的一段土地上每隔4米栽一棵树,并且已经挖好坑。后来改为每隔6米栽一棵树。求重新挖树坑时可以少挖几个?(适于六年级程度)解:这一段地全长96米,从一端每隔4米挖一个坑,一共要挖树坑:964+1=25(个)后来,改为每隔6米栽一棵树,原来挖的坑有的正好赶在6米一棵的坑位上,可不重新挖。由于4和6的最小公倍数是12,所以从第一个坑开始,每隔12

28、米的那个坑不必挖。9612+1=9(个)96米中有8个12米,有8个坑是已挖好的,再加上已挖好的第一个坑,一共有9个坑不必重新挖。答略。例9 一项工程,甲队单独做需要18天,乙队单独做需要24天。两队合作8天后,余下的工程由甲队单独做,甲队还要做几天?(适于六年级程度)解:由18、24的最小公倍数是72,可把全工程分为72等份。7218=4(份)是甲一天做的份数7224=3(份)是乙一天做的份数(4+3)8=56份)两队8天合作的份数72-56=16(份)余下工程的份数164=4(天)甲还要做的天数答略。*例10 甲、乙两个码头之间的水路长234千米,某船从甲码头到乙码头需要9小时,从乙码头返

29、回甲码头需要13小时。求此船在静水中的速度?(适于高年级程度)解:9、13的最小公倍数是117,可以把两码头之间的水路234千米分成117等份。每一份是:234117=2(千米)静水中船的速度占总份数的:(13+9)2=11(份)船在静水中每小时行:211=22(千米)答略。*例11 王勇从山脚下登上山顶,再按原路返回。他上山的速度为每小时3千米,下山的速度为每小时5千米。他上、下山的平均速度是每小时多少千米?(适于六年级程度)解:设山脚到山顶的距离为3与5的最小公倍数。35=15(千米)上山用:153=5(小时)下山用:155=3(小时)总距离总时间=平均速度(152)(5+3)=3.75(

30、千米)答:他上、下山的平均速度是每小时3.75千米。*例12 某工厂生产一种零件,要经过三道工序。第一道工序每个工人每小时做50个;第二道工序每个工人每小时做30个;第三道工序每个工人每小时做25个。在要求均衡生产的条件下,这三道工序至少各应分配多少名工人?(适于六年级程度)解:50、30、25三个数的最小公倍数是150。第一道工序至少应分配:15050=3(人)第二道工序至少应分配:15030=5(人)第三道工序至少应分配:15025=6(人)答略。第三十四讲 解平均数问题的方法已知几个不相等的数及它们的份数,求总平均值的问题,叫做平均数问题。 解答平均数问题时,要先求出总数量和总份数。总数

31、量是几个数的和,总份数是这几个数的份数的和。解答这类问题的公式是;总数量总份数=平均数例1 气象小组在一天的2点、8点、14点、20点测得某地的温度分别是13摄氏度、16摄氏度、25摄氏度、18摄氏度。算出这一天的平均温度。(适于四年级程度)解:本题可运用求平均数的解题规律“总数量总份数=平均数”进行计算。这里的总数量是指测得的四个温度的和,即13摄氏度、16摄氏度、25摄氏度、18摄氏度的和;这里的总份数是指测量气温的次数,一天测量四次气温,所以总份数为4。(13+16+25+18)4=724=18(摄氏度)答:这一天的平均气温为18摄氏度。例2 王师傅加工一批零件,前3天加工了148个,后

32、4天加工了167个。王师傅平均每天加工多少个零件?(适于四年级程度)解:此题的总数量是指前3天和后4天一共加工的零件数,总份数是指前、后加工零件的天数之和。用总数量除以总份数,便求出平均数。前、后共加工的零件数:148+167=315(个)前、后加工零件共用的天数:3+4=7(天)平均每天加工的零件数:3157=45(个)综合算式:(148+167)(3+4)3157=45(个)答:平均每天加工45个零件。例3 某工程队铺一段自来水管道。前3天每天铺150米,后2天每天铺200米,正好铺完。这个工程队平均每天铺多少米?(适于四年级程度)解:本题的总数量是指工程队前3天、后2天一共铺自来水管道的

33、米数。总份数是指铺自来水管道的总天数。用铺自来水管道的总米数除以铺自来水管道的总天数,就可以求出平均每天铺的米数。前3天铺的自来水管道米数:1503=450(米)后2天铺的自来水管道米数:2002=400(米)一共铺的自来水管道米数:450+400=850(米)一共铺的天数:3+2=5(天)平均每天铺的米数:8505=170(米)综合算式:(1503+2002)(3+2)(450+400)58505170(米)答略。例4 有两块实验田,第一块有地3.5亩,平均亩产小麦480千克;第二块有地1.5亩,共产小麦750千克。这两块地平均亩产小麦多少千克?(适于四年级程度)解:本题的总数量是指两块地小

34、麦的总产量,总份数是指两块地的总亩数,用两块地的总产量除以两块地的总亩数,可求出两块地平均亩产小麦多少千克。3.5亩共产小麦:4803.5=1680(千克)两块地总产量:1680+750=2430(千克)两块地的总亩数:3.5+1.5=5(亩)两块地平均亩产小麦:24305=486(千克)综合算式:(4803.5+750)(3.5+1.5)(1680+750)524305=486(千克)答略。例5 东风机器厂,五月份上半月的产值是125.2万元,比下半月的产值少70万元。这个厂五月份平均每天的产值是多少万元?(适于四年级程度)解:本题的总数量是指五月份的总产值。五月份上半月的产值是125.2万

35、元,比下半月的产值少70万元,也就是下半月比上半月多70万元,所以下半月产值为125.2+70=195.2(万元)。把上半月的产值和下半月的产值相加,求出五月份的总产值。本题的总份数是指五月份的实际天数。五月份为大月,共有31天。用五月份的总产值除以五月份的实际天数,可求出五月份平均每天的产值是多少万元。下半月产值:125.2+70=195.2(万元)五月份的总产值:125.2+195.2=320.4(万元)五月份平均每天的产值:320.43110.3(万元)综合算式:(125.2+125.2+70)31=320.43110.3(万元)答略。例6 崇光轴承厂六月上旬平均每天生产轴承527只,中

36、旬生产5580只,下旬生产5890只。这个月平均每天生产轴承多少只?(适于四年级程度)解:本题的总数量是指六月份生产轴承的总只数,总份数是指六月份生产轴承的总天数。用六月份生产轴承的总只数除以六月份的总天数,可求出六月份平均每天生产轴承数。六月上旬生产轴承的只数:52710=5270(只)六月中、下旬共生产轴承:5580+5890=11470(只)六月份共生产轴承:5270+11470=16740(只)六月份平均每天生产轴承:1674030=558(只)综合算式:(52710+5580+5890)30=(5270+5580+5890)30=1674030=558(只)答略。例7 糖果店配混合糖

37、,用每千克4.8元的奶糖5千克,每千克3.6元的软糖10千克,每千克2.4元的硬糖10千克。这样配成的混合糖,每千克应卖多少元?(适于四年级程度)解:本题中的总数量是指三种糖的总钱数;总份数是指三种糖的总重量。总钱数除以总重量,可求出每千克混合糖应卖多少钱。三种糖总的钱数:4.85+3.610+2.410=24+36+24=84(元)三种糖的总的重量:5+10+10=25(千克)每千克混合糖应卖的价钱:8425=3.36(元)综合算式:(4.85+3.610+2.410)(5+10+10)84253.36(元)答略。例8 一辆汽车从甲地开往乙地,在平地上行驶了2.5小时,每小时行驶42千米;在

38、上坡路行驶了1.5小时,每小时行驶30千米;在下坡路行驶了2小时,每小时行驶45千米,就正好到达乙地。求这辆汽车从甲地到乙地的平均速度。(适于四年级程度)解:本题中的总数量是由甲地到乙地的总路程:422.5+301.5+452=105+45+90=240(千米)本题中的总份数是由甲地到乙地所用的时间:2.5+1.5+2=6(小时)这辆汽车从甲地到乙地的平均速度是:2406=40(千米/小时)综合算式:(422.5+301.5+452)(2.5+1.5+2)240640(千米/小时)答略。*例9 学校发动学生积肥支援农业,三年级85人积肥3640千克,四年级92人比三年级多积肥475千克,五年级

39、的人数比四年级多3人,积肥数比三年级多845千克。三个年级的学生平均每人积肥多少千克?(适于四年级程度)解:本题中的总数量是三个年级积肥的总重量。已知三年级积肥3640千克。四年级积肥:3640+475=4115(千克)五年级积肥:3640+845=4485(千克)三个年级共积肥:3640+4115+4485=12240(千克)本题中的总份数就是三个年级学生的总人数。三年级学生人数是85人已知,四年级学生人数是92人已知,五年级学生人数是:92+3=95(人)三个年级学生的总人数是:85+92+95=272(人)三个年级的学生平均每人积肥:12240272=45(千克)综合算式:(36403+

40、475+845)(85+922+3)=12240272=45(千克)答略。例10 山上某镇离山下县城有60千米的路程。一人骑自行车从该镇出发去县城,每小时行20千米。从县城返回该镇时,由于是上坡路,每小时只行了15千米。问此人往返一次平均每小时行了多少千米?(适于四年级程度)解:本题中的总数量是从某镇到县城往返一次的总路程:602=120(千米)总份数是往返一次用的时间:6020+6O15=3+4=7(小时)此人往返一次平均每小时行的路程是:120717.14(千米)综合算式:602(6020+6015)120(3+4)120717.14(千米)答略。*例11 有两块棉田,平均亩产皮棉91.5

41、千克。已知一块田是3亩,平均亩产皮棉104千克。另一块田是5亩,求这块田平均亩产皮棉多少千克?(适于四年级程度)解:两块棉田皮棉的总产量是:91.5(3+5)=732(千克)3亩的那块棉田皮棉的产量是:1043=312(千克)另一块棉田皮棉的平均亩产量是:(732-312)5420584(千克)综合算式:91.5(3+5)-10435732-3125420584(千克)答略。*例12 王伯伯钓鱼,前4天共钓了36条,后6天平均每天比前4天多钓了5条。问王伯伯平均每天钓鱼多少条?(适于四年级程度)解(1):题中前4天共钓36条已知,后6天共钓鱼:(364+5)6=146=84(条)一共钓鱼的天数

42、是:4+6=10(天)10天共钓鱼:36+84=120(条)平均每天钓鱼:12010=12(条)综合算式:36+(364+5)6(4+6)=36+8410=12010=12(条)答略。解(2):这道题除用一般方法解之外,还可将后6天多钓的鱼按10天平均后,再加上原来4天的平均钓鱼数。(56)(4+6)+364=3+9=12(条)答:王伯伯平均每天钓鱼12条。例13 一个小朋友爬山,上山速度为每小时2千米,到达山顶后立即按原路下山,下山速度为每小时6千米。这个小朋友上、下山的平均速度是多少?(适于四年级程度)解:本题的总数量是上山、下山的总路程,题中没有说总路程是多少。假设上山的路程是1千米,那

43、么下山的路程也是1千米,上山、下山的总路程是2千米。本题的总份数是上山、下山总共用的时间。上山、下山总共用的时间是:所以,上山、下山的平均速度是:答略。例14 某厂一、二月份的平均产值是1.2万元,三月份的产值比第一季度的平均月产值还多0.4万元。这个工厂三月份的产值是多少万元?(适于四年级程度)解:此题数量关系比较隐蔽,用“总数量总份数”的方法做不出来。作图(34-1)。从图34-1可以看出,一、二月份的平均产值都是1.2万元。题中说“三月份的产值比第一季度的平均月产值还多0.4万元”,那么三月份的产值一定比一、二月份的平均产值要高,所以图34-1中表示三月份产值的线段比表示一、二月份平均产

44、值的线段长。第一季度的平均产值是多少万元呢?我们用“移多补少”的方法,把图34-1中三月份的0.4万元平均分成2份,分别加到一、二月份的产值上,这样就得到第一季度的平均产值了。1.2+0.42=1.4(万元)因为三月份的产值比第一季度的平均月产值还多0.4万元,所以三月份的产值是:1.4+0.4=1.8(万元)综合算式:1.2+0.42+0.4=1.4+0.4=1.8(万元)答略。*例15 苹果2千克卖2元钱,梨3千克卖2元钱。把每一筐15千克的梨、苹果各一筐掺到一起,按2元钱2.5千克来卖,是挣钱,还是赔钱?按照前面的标准价计算差了多少元?(适于四年级程度)解:苹果的单价是每1千克1元钱,梨的单价是每1千克2/3元,混合后每1千

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁