《第四讲--函数的奇偶性知识点及经典例题(共3页).doc》由会员分享,可在线阅读,更多相关《第四讲--函数的奇偶性知识点及经典例题(共3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 第四讲 奇偶性知识点及经典例题一、函数奇偶性的概念:设函数的定义域为,如果对内的任意一个,都有,且,则这个函数叫奇函数。(如果已知函数是奇函数,当函数的定义域中有0时,我们可以得出)设函数的定义域为,如果对内的任意一个,都有,若,则这个函数叫偶函数。 从定义我们可以看出,讨论一个函数的奇、偶性应先对函数的定义域进行判断,看其定义域是否关于原点对称。也就是说当在其定义域内时,也应在其定义域内有意义。 图像特征如果一个函数是奇函数这个函数的图象关于坐标原点对称。如果一个函数是偶函数这个函数的图象关于轴对称。复合函数的奇偶性:同偶异奇 对概念的理解:(a)必要条件:定义域
2、关于原点成中心对称。(b)与的关系: 当或或时为偶函数; 当或或时为奇函数。二、函数的奇偶性与图象间的关系: 偶函数的图象关于轴成轴对称,反之也成立; 奇函数的图象关于原点成中心对称,反之也成立。三、关于函数奇偶性的几个结论:若是奇函数且在处有意义,则偶函数 偶函数=偶函数;奇函数奇函数=奇函数; 偶函数偶函数=偶函数;奇函数奇函数=偶函数; 偶函数奇函数=奇函数 奇函数在对称的单调区间内有相同的单调性, 偶函数在对称的单调区间内具有相反的单调性.(二)、关于函数奇偶性的运用1利用奇偶性求函数式或函数值1设函数为定义域为R上奇函数,又当时,试求的解析式。2.已知是奇函数,当时,求当时,得解析式。3.设函数是定义域R上的奇函数,当时,求的值。5.已知函数,若,求的值。6若函数是偶函数,则 。7.已知是偶函数,是奇函数,且,试求的表达式。专心-专注-专业