《2022年正弦定理教案.doc》由会员分享,可在线阅读,更多相关《2022年正弦定理教案.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、正弦定理教案 篇一:正弦定理 正弦定理 教案设计 崇明县堡镇中学 黄独一 一、教学目的 1、在创设的征询题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探究和证明正弦定理,体验坐标法将几何征询题转化为代数征询题的优越性,感受数学论证的严谨性。 2、理解三角形面积公式,能运用正弦定理处理三角形的两类根本征询题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。 3、通过对实际征询题的探究,加强学生的数学应意图识,激发学习的兴趣,学生感遭到数学知识既来源于生活,又效劳于生活。 二、教学重点与难点 教学重点:正弦定理的探究与证明;正弦定理的根本应用。 教学难点:正弦定理的探
2、究与证明。 打破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,老师在学生 主体下给于适当的提示和指导。 三、教学方式:以学生为主体,以老师为主导,启发式教学。 四、教学过程 1创设情景,导入新课 某林场为了及时觉察火情,在林场中设立了两个观测点A和B,某日两个观测点的林场人员分别观测到C处出现火情. 在A处观测到火情发生在北偏西40?方向,在B处观测到火情发生在北偏西60?方向.已经明白B在A的正东方向10千米处,如今要确定火场C间隔A,B多远。 2知识回忆: 初中时,在直角三角形中我们已学习了锐角三角比的意义,锐角A,B的正弦是如何定义的呢?在Rt?ABC中,?C
3、?90 sinA? ?ab ,sinB? ccabC?1 ?csinsinAsinB abc? sinAsinBsinC 考虑:关于一般三角形,上述结论是否成立? 3、逻辑推理,探究证明 探究一:通过几何画板构造任意三角形,分别计算 探究二:引导学生利用坐标法证明正弦定理。 abc,的值,观察是否相等。 sinAsinBsinC 3解读定理,加深理解 一、正弦定理的结个特征:各边与其对角的正弦严格对应,表达了数学的对称美。 二:用文字语言表达正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 三、正弦定理能够处理以下两品种型的三角形: (1)已经明白两角及任意一边; (2)已经明白两边及
4、其中一边的对角。 4求解例题,稳定定理 1、处理引例: 2、例1:在?ABC中,已经明白B?30?,C?45?,b?2,求a,A,c(已经明白两角一边) 3、例2:在?ABC中,已经明白a?2,A?45?,b?6,求B,C,c(已经明白两边一对角,2解) 变式:在?ABC中,已经明白a?2,A?45?,b?1,求B,C,c,S?ABC(已经明白两边一对角,1解) 回家考虑:已经明白两边和其中一边的对角,求其他边和角时,三角形什么情况下有一解,二解,无解? 5归纳小结,提高升华 1、正弦定理abc?,它是解三角形的工具之一。 sinAsinBsinC 2、正弦定理能够处理以下两品种型的三角形:
5、(1)已经明白两角及任意一边; (2)已经明白两边及其中一边的对角. 6、稳定与练习: 1、在?ABC中,已经明白C?45?,A?30?,a?8,求b,c 2、在?ABC中,已经明白B?75?,A?60?,c?8,求a,b 3、在?ABC中,已经明白a?43,A?30?,b?46,求B,C,c 4、在?ABC中,已经明白a?,A?60?,b? 7作业布置,延伸课堂 必做题:书本:第69页练习 5.6(1)第2、3题。 习题册:第25页5.6 A组 第3、4题。 2,求B,C,c篇二:正弦定理精品教案详案 正弦定理 一、教学内容分析: 本节课是数学第五章三角比第三单元中解斜三角形的第一课时,它是
6、初中“解直角三角形”内容的直截了当延拓,是处理消费、生活实际征询题的重要工具,正弦定理提示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。 本节课的主要任务是通过引入三角形新的面积公式,推导出正弦定理,并让学生初步掌握正弦定理的根本应用。 二、学情分析: 对高一的学生来说,一方面已经学习了平面几何、解直角三角形、任意角的三角比等知识,具有一定的观察分析、处理征询题的才能;但另一方面对新旧知识间的联络、理解、应用往往会出现思维障碍,思维灵敏性、深化性遭到制约,特别是关于本校的同学,这方面的才能比拟薄弱。按照以上特点,老师需要恰当引导,提高学生学习主动性,留意前后知
7、识间的联络,引导学生直截了当参与分析征询题、处理征询题。 三、设计思路: 由于学生的总体根底比拟薄弱,因而,在上课之前,针对正弦定理课内内容学生不太容易理解的地点,我作了一个学情调查,将其中的公式推导要应用的关键知识以标题的方式出给学生做,用以诊断学生学习正弦定理的知识方法根底,然后分析梳理为课堂教学效劳。 在课堂教学方面,首先通过一个实际生活的例子引入,在现实的测绘工作中,经常会碰到解斜三角形的征询题,那么,在斜三角形中,边和角之间有没有特别的关系能够给我们利用呢?借鉴前面利用坐标研究三角的方法,用坐标法来对任意三角形进展研究,得到三角形新的面积公式,通过对三角形面积公式的变形,得到正弦定理
8、,但不比照值的意义作深化的讨论(放在第二节课进展)。定理研究完毕以后,引导学生利用正弦定理来处理详细征询题,并觉察,正弦定理能够处理解三角形的两类征询题:(1)已经明白三角形两角和一边,求其它边和角;(2)已经明白三角形两边和一边对角,求其它边和角。 四、教学目的: 一、知识与技能: 理解三角形的面积公式,初步掌握正弦定理及其证明;会初步运用正弦定理解三角形;培养数学应意图识。 二、过程与方法: 1、通过实际征询题,激发学生的学习兴趣; 2、采纳坐标法来研究任意三角形,并感受其处理征询题的优越性,感受数学推理的严谨性; 3、通过应用分析、征询题处理来培养学生良好的学习思维适应,加强学生学习的自
9、决心。 三、情感、态度与价值观: 通过知识之间的联络与推理使学生明白事物之间的普遍联络与辩证统一性。 四、教学重点与难点 教学重点:正弦定理的探究与证明;正弦定理的根本应用。 教学难点:正弦定理的探究与证明;正弦定理在解三角形时的应用思路。教学过程: 一、 情景引入: 开始白:今天我们来研究三角形。初中我们曾经学习过解直角三角形,通常按照直角三角形中边角的特别关系来求解。但在处理实际征询题中,往往会碰到关于解斜三角形的征询题。如: 某林场为了及时觉察火情,在林场中设立了两个观测点A和B。某日两个观测点的林场人员分别观测到C处出现火情。在A处观测到火情发生在北偏西400方向,在B处观测到火情在北
10、偏西600方向。已经明白B在A的正东方向10千米处,请你协助确定火场C间隔A、B多远? 这个实际征询题能够转化为一个数学征询题: 00在三角形ABC中,已经明白AB=10,?A?130,?B?30,求AC和BC的 长? 这确实是一个解斜三角形的征询题。 师:考虑一下,我们用往常的知识该如何求呢? 生:- 师:我们能够通过作垂线,构造直角三角形的征询题来解。但是,有没有更好的方法,能够直截了当求解呢?这确实是我们今天要研究的内容-正弦定理。 二、新授课 我们在角的范围扩大后,将角放在坐标系中进展研究,对任意角三角比重新进展了定义,奠定了整个三角内容的根底。今天,我们同样将三角形放在坐标系中进展研
11、究,看能否给我们一些惊喜? 如以下图建立直角坐标系: 我们先定一下点A、B、C的坐标. si)n A AbA(0,0)B(c,0) c(bcos, 征询:点C的坐标如何确定? 生:点C在角A的终边上,按照任意角三角比的定义, CosA=x/b,sinA=y/b因而:x=bcosA,y=bsinA 师:从这里看一看出,不管角A 我们来看看点C的纵坐标,它的大小等于点C到x征询:大家觉察没有,关于三角形ABC来说,CD有没有什么几何含义? 生:它是三角形ABC边AB上的高。 师:我们看一下,这个三角形的底边AB长为c,高能够表示成bsinA,明白了三角形的底边和高,可 以求出什么?生:三角形的面积
12、。 师:请说出三角形的面积表达式: 生:S?ABC? 1 b?csinA 2 师:(操作几何画板,变动三角形形状)我们来看一下,当三角形变化时,点C的纵坐标的方式会不 会发生变化? 生:不会 师:那确实是说,这个面积公式能够适用于任意三角形。 师:我们明白,一个三角形含有6个元素,三条边,三个角,这个表达式含有几个元素? 生:三个,两条边,一个角。 师:边和角有什么关系吗? 生:角是两边的夹角。 师:你能用一句话来表达一下这个面积公式吗? 生:三角形的面积等于:三角形的两边与它们的夹角的正弦值的乘积的一半。 师:我们如今是用b,c,A这三个元从来表示的,那么,同样的,你还能用其他的边角来表示吗
13、? 生:S?ABC? 111 b?csinA?a?csinB?a?bsinC 222 师:用一句话来描绘一下这个公式? 生:三角形的面积 = 任意两边与他们夹角的正弦的积的一半 师:这是一个特别美丽的公式,我们看看,它将任意三角形的三条边,三个角和三角形的面积在一个式子里面联络在了一起。从今以后,我们求三角形的面积又多了一个选择。 师:我们通过这个公式还能够看出,任意三角形的边角之间有一种特别的等量关系,我们把等式中的S和 1 去掉看看:b?csinA?a?csinB?a?bsinC 2 师:我们看看这个式子,等式中每条边都出现了2次,每个角出现了1次,总的来说仍然特别复杂。我 们能否将它们进
14、展等价变形,让边角之间的关系变得更加明确、更加简单一点? 思路1:等式的左、中、右同除以abc又会得到什么呢? 生: sinAsinBsinC ? abc abc ? sinAsinBsinC 我们把这个等式取倒数,能够写成:思路2: 我们将这个连等式变化成2个等式:bcsinA=acsinB,acsinB=absinC 即:bsinA=asinB,csinB=bsinC,要使2个等式的方式完全一样,同时能够练习在一起。 再变形:能够得到b/sinB=a/sinA,c/sinC=bsinB因而能够得到: abc ? sinAsinBsinC 我们来看一下,这个连等式将三角形的6个元素完满的结合
15、在了一起,比起前面的表达式,它显得特别的简约,特别的美。为什么说它特别美呢?大家看看它的构造,有什么特点? 生:各边与其对角的正弦严格对应,表达了数学的对称美. 征询:哪位同学能用文字语言把它描绘一下? 生:在一个三角形中,各边和它所对角的正弦的比相等 师:我们初中学过,在任意三角形ABC中,大边对大角,这个两等式能够看做大边对大角的一个晋级版,大边对大角的正弦,小边对小角的正弦,他们的比值相等。 不研究不明白,一研究吓一跳,小小的一个三角形包含了这么多的奇妙! 说明:这确实是我们今天要学的正弦定理。为什么要写成这种方式呢?由于这个比值是一个常数,有它特定的意义,我们在下一节课再进展研究。 师
16、:我们再来研究一下这个连等式。我们能够将它分解成几个等式? 生:三个:abacbc ?,? sinAsinBsinAsinCsinBsinC 师:我们来看一下,每个等式含有4个元素。关于每个等式来说,假设用方程的观点来看,假设要求出其中一个元素,需要明白几个元素? 生:明白三个。 师:三个方程,每个含有四个量,知其三求其一。 练习:(1)以下哪些三角形的x能够用正弦定理来求解?假设能够,应该如何求?(不必求出x的值) B B B(3) B C B (5) B (6) (4) 由此,我们能够归纳出正弦定理能够处理某些三角形的求解征询题: (1)已经明白两角及任意一边; (2)已经明白两边及其中一
17、边的对角. (2) 应用正弦定理处理引例征询题; 4、归纳小结 请大家梳理一下我们今天学的内容: 生:我们今天利用坐标系对三角形进展研究,觉察了: 1、 三角形面积公式: S?ABC? 111 b?csinA?a?csinB?a?bsinC222 即:三角形的面积等于三角形任意两条边与它夹角的正弦的积的一半。 2、 正弦定理 abc ?,它是解三角形的工具之一。 sinAsinBsinC 即:在三角形中,各边与它所对角的正弦的比相等。 3、正弦定理能够处理以下两品种型的三角形: (1)已经明白两角及任意一边; (2)已经明白两边及其中一边的对角. 5、作业: 练习卷 资源网(),您四周的高考专
18、家 一、教学目的: 1、才能要求: 掌握正弦定理,能初步运用正弦定理解一些斜三角形; 能够运用正弦定理处理某些与测量和几何有关的实际征询题。 2、过程与方法: 使学生在已有知识的根底上,通过对任意三角形边角关系的探究,觉察并掌握三角形中的边长与角度之间的数量关系正弦定理。 在探究学习中认识到正弦定理能够处理某些与测量和几何计算有关的实际征询题,协助学生提高运用有关知识处理实际征询题的才能。 二、教学重点、难点: 重点: 理解和掌握正弦定理的证明方法。 难点: 理解和掌握正弦定理的证明方法;三角形解的个数的探究。 三、预习征询题处理: 1、在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函
19、数,能够由已经明白的边和角求出未知的边和角。那么斜三角形如何办?确定一个直角三角形或斜三角形需要几个条件? 2、正弦定理:即 。 3、一般地,把三角形的三个角A,B,C和它们所对的边a,b,c叫做三角形的 ,已经明白三角形的几个元素求其它元素的过程叫做。 4、用正弦定理可处理以下那种征询题 已经明白三角形三边;已经明白三角形两边与其中一边的对角;已经明白三角形两边与第三边的对角;已经明白三角形三个内角;已经明白三角形两角与任一边;已经明白三角形一个内角与它所对边之外的两边。 5、上题中运用正弦定理可求解的征询题的解题思路是如何样的? 四、新课讲解: 在Rt?ABC中,设C?90,那么 sinA
20、?asinA ?ac ,sinB?bsinB ? bcc ,sinC?1,即:c? asinA ,c? bsinB ,c? csinC ? , sinC 。 共4页 第1页高考资源网(),您四周的高考专家 征询题一:关于一般的三角形,上述关系式是否仍然成立呢? 设?ABC为锐角三角形,其中C为最大角。 如图()过点A作AD?BC于D,如今有sinB?因而csinB?bsinC,即因而 设?ABC为钝角三角形,其中C为最大角。 如图()过点过点A作AD?BC,交BC的延长线于D,如今也有sinB?且sinC?sin?180?C? ? ADca ,sinC? csinC ADb , bsinB ?
21、 csinC 同理可得 sinA , asinA ? bsinB ? csinC 。 ADc , ADb 同样可得 asinA ? bsinB ? csinC 。 综上可知,结论成立。 先作出三边上的高AD,BE,CF,那么AD?csinB,BE?asinC,CF?bsinA。 因而S?ABC? asinA ? bsinB 12 absinC? csinC 12 acsinB? 12 bcsinA,每项同除以 12 abc即得: 五、例题讲解: ? 例1、已经明白:在?ABC中,?A?45,?C?30,c?10,解此三角形。 解:由?A?45,?C?30可得?B?105 由 asinA ? b
22、sinB ? csinC ? ,可依次计算出a?102,b?56?52。 6,BC?2,解此三角形。 ? 例2、已经明白:在?ABC中,?A?45,AB? 解:由 ABsinC ? BCsinA ? ACsinB ?sinC? ABsinABC 6? 2? 22 ? 32 ? 当?C?60时, ?B?75AC? BCsinBsinABCsinBsinA 3?1 3?1 ? 当?C?120时, ?B?15AC? 共4页 第2页高考资源网(),您四周的高考专家 六、知识拓展: 1、正弦定理中对应的边与其角的正弦值之比为常数。 以半径为R作一圆,然后作一圆内接?ABC,过点A作圆的直径可得?ACD?
23、90?,且?B?D,故在Rt?ACD中有即 bsinBasinA ?2R,同理可得 asinA ? csinC ?2R A bsinD ?2C 由此,正弦定理可拓展为: ? bsinB12 ? csinC ?2R(R为?ABC外接圆半径) D A 2、三角形面积的另外表示方法。 S?ABC? absinC? 12 acsinB? 12 bcsinA b2R 如右图,?B?D,因而sinB?sinD?因而S?ABC? 12 acsinB? 12ac? b2R?abc4R B D 即三角形面积公式为: S?ABC? 12 absinC? A 如右图,圆O为三角形ABC的内切圆,圆r。 S?ABC?S?ACO?S?ABO?S?BCO ?1212 AC?r? 12AB?r? 12BC?r ?a?b?c?r 七、小结: 1、正弦定理的证明; 共4页 第3页 B D C 2、利用正弦定理解斜三角形的方法,及利用正弦定理可处理征询题类型。高考资源网(),您四周的高考专家 共4页 第4页