《2023年高二物理知识点.docx》由会员分享,可在线阅读,更多相关《2023年高二物理知识点.docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高二物理知识点高二物理知识点1一、静电场1.两种电荷、电荷守恒定律、元电荷:(e=1.6010-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中)F:点电荷间的下面是我为大家整理的高二物理知识点,供大家参考。高二物理知识点1一、静电场1.两种电荷、电荷守恒定律、元电荷:(e=1.6010-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中)F:点电荷间的作用力(N),k:静电=9.0109Nm2/C2,Q1、Q2:两点电荷的(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,
2、异种电荷互相吸引3.电场强度:E=F/q(定义式、计算式)E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)4.真空点(源)电荷形成的电场E=kQ/r2r:源电荷到该位置的距离(m),Q:源电荷的电量5.匀强电场的场强E=UAB/dUAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)6.电场力:F=qEF:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)7.电势与电势差:UAB=A-B,UAB=WAB/q=-EAB/q8.电场力做功:WAB=qUAB=EqdWAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中
3、A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)9.电势能:EA=qAEA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)10.电势能的变化EAB=EB-EA带电体在电场中从A位置到B位置时电势能的差值11.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式)C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)13.*行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数)常见电容器见第二册P11114.带电粒子
4、在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类*垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的*行极板中:E=U/d)抛运动*行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后*分,原带同种电荷的总量*分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线
5、分布要求熟记见图第二册P98;(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电*衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106F=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.6010-19J;(8)其它相关内容:静电屏蔽见第二册P101/示波管、示波器及其应用见第二册P114等势面见第二册P105。二、恒定电流1.电流强度:I=q/tI:电流强度(A),q:在时间t内通过导体横载面的
6、电量(C),t:时间(s)2.欧姆定律:I=U/RI:导体电流强度(A),U:导体两端电压(V),R:导体阻值()3.电阻、电阻定律:R=L/S:电阻(/m),L:导体的长度(m),S:导体横截面积(m2)4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(),r:电源内阻()5.电功与电功率:W=UIt,P=UIW:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)6.焦耳定律:Q=I2RtQ:电热(J),I:通过导体的电流(A),R:导体的电阻值(),t:通电时间(s)7.纯
7、电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,=P出/P总I:电路总电流(A),E:电源电动势(V),U:路端电压(V),:电源效率9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表
8、笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数注意挡位(倍率)、拨off挡。(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。11.伏安法测电阻电流表内接法:电压表示数:U=UR+UA电流表外接法:电流表示数:I=IR+IVRx的测量值=U/I=(UA+UR)/IR=RA+RxR真;Rx的测量值=U/I=UR/(IR+IV)=RVRx(RV+R)选用电
9、路条件RxRA或Rx(RARV)1/2选用电路条件Rx12.滑动变阻器在电路中的限流接法与分压接法限流接法:电压调节范围小,电路简单,功耗小便于调节电压的选择条件RpRx电压调节范围大,电路复杂,功耗较大便于调节电压的选择条件Rp注:(1)单位换算:1A=103mA=106A;1kV=103V=106mA;1M=103k=106(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;(3)串*电阻大于任何一个分电阻,并*电阻小于任何一个分电阻;(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E
10、2/(2r);(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用见第二册P127。三、磁场1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/Am2.安培力F=BIL;(注:LB)B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)3.洛仑兹力f=qVB(注VB);质谱仪见第二册P155f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿*行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒
11、子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=m2r=mr(2/T)2=qVB;r=mV/qB;T=2m/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;(2)磁感线的特点及其常见磁场的磁感线分布要掌握见图及第二册P144;(3)其它相关内容:地磁场/磁电式电表原理见第二册P150/回旋加速器见第二册P156/磁性材料四、电磁感应1.感应电动势的大小计算公式1)E=n/t(
12、普适公式)法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,/t:磁通量的变化率2)E=BLV垂(切割磁感线运动)L:有效长度(m)3)Em=nBS(交流发电机最大的感应电动势)Em:感应电动势峰值4)E=BL2/2(导体一端固定以旋转切割):角速度(rad/s),V:速度(m/s)2.磁通量=BS:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)3.感应电动势的正负极可利用感应电流方向判定电源内部的电流方向:由负极流向正极4.自感电动势E自=n/t=LI/tL:自感系数(H)(线圈L有铁芯比无铁芯时要大),I:变化电流,?t:所用时间,I/t:自感电流变化率(变
13、化的快慢)注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点见第二册P173;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106H.(4)其它相关内容:自感见第二册P178/日光灯见第二册P180。五、交变电流(正弦式交变电流)1.电压瞬时值e=Emsint电流瞬时值i=Imsint;(=2f)2.电动势峰值Em=nBS=2BLv电流峰值(纯电阻电路中)Im=Em/R总3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/24.理想变压器原副线圈中的电压与电流及功率关系U1/U2=n1/n2
14、;I1/I2=n2/n2;P入=P出5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损=(P/U)2R;(P损:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)见第二册P198;6.公式1、2、3、4中物理量及单位:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:电=线,f电=f线;(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;(3)有效值是根据电流热效
15、应定义的,没有特别说明的交流数值都指有效值;(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;(5)其它相关内容:正弦交流电图象见第二册P190/电阻、电感和电容对交变电流的作用见第二册P193。普适式)U:电压(V),I:电流(A),t:通电时间(s)高二物理知识点2高压输电知识点导学:输送电能的过程:发电站升压变压器高压输电线降压变压器用电单位。高压输电的道理:要减小电能的损失,必须减小输电电流。输电功率必须足够大。高压输电可以保证在输送功率不变,减小输电电流来减小输送电的电能损失。
16、电磁感应现象知识点导学:1831年英国物理学家法拉第发现了电磁感应现象。电磁感应现象:利用磁场产生电流的现象叫电磁感应现象。由电磁感应产生的电流叫感应电流。产生感应电流的条件:穿过闭合回路的的磁通量发生变化。法拉第电磁感应定律知识点导学:感应电动势:电磁感应现象中产生的电动势。电磁感应定律的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。公式:E=/t(单线圈); E=n/t(n匝线圈)高二物理知识点31、库仑定律:F=kQ1Q2/r2(在真空中)F:点电荷间的作用力(N),k:静电力常量k=9、0109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离
17、(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引2、两种电荷、电荷守恒定律、元电荷:(e=1、6010-19C);带电体电荷量等于元电荷的整数倍3、电场强度:E=F/q(定义式、计算式)E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)4、真空点(源)电荷形成的电场E=kQ/r2r:源电荷到该位置的距离(m),Q:源电荷的电量5、电场力:F=qEF:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)6、匀强电场的场强E=UAB/dUAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)7、电势与电势差:UAB
18、=A-B,UAB=WAB/q=-EAB/q8、电场力做功:WAB=qUAB=EqdWAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)9、电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)10、电势能:EA=qAEA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)11、电势能的变化EAB=EB-EA带电体在电场中从A位置到B位置时电势能的差值12、电容C=Q/U(定义式,计算式)C:电容(F),Q:电量(C),U:电
19、压(两极板电势差)(V)13、*行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数)14、带电粒子在电场中的.加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/215、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类*垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的*行极板中:E=U/d)抛运动*行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m高二物理知识点4一、磁场:1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用; 2、磁铁、电流都能能产生磁场;3、磁极和
20、磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用; 4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;1、磁感线是人们为了描述磁场而人为假设的线;2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;3、磁感线是封闭曲线;三、安培定则:1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;3、通电螺旋管的磁
21、场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);五、磁感应强度:磁感应强度是描述磁场强弱的物理量。 1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL 2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向) 3、磁感应强度的国际单位:特斯拉 T, 1T=1N/A。M六、安培力:磁场对电流的作用力; 1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度
22、B、电流I和导线长度L三者的乘积。2、定义式F=BIL(适用于匀强电场、导线很短时) 3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个*面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。七、磁铁和电流都可产生磁场;八、磁场对电流有力的作用;九、电流和电流之间亦有力的作用;(1)同向电流产生引力; (2)异向电流产生斥力;十、分子电流假说:所有磁场都是由电流产生的;十一、磁性材料:能够被强烈磁化的物质叫磁性材料:(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器
23、、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;十二、磁场对运动电荷的作用力,叫做洛伦兹力1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;(1)洛仑兹力F一定和B、V决定的*面垂直。 (2)洛仑兹力只改变速度的方向而不改变其大小 (3)洛伦兹力永远不做功。2、洛伦兹力的大小 (1)当v*行于B时:F=0 (2)当v垂直于B时:F=qvB高二物理知识点51、电容知识点总结(1)两个彼此绝缘,而又互相靠近的导体,就组成了一个电容器。
24、(2)电容:表示电容器容纳电荷的本领。a 定义式:,即电容C等于Q与U的比值,不能理解为电容C与Q成正比,与U成反比。一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关。b 决定因素式:如*行板电容器(不要求应用此式计算)(3)对于*行板电容器有关的Q、E、U、C的讨论时要注意两种情况:a 保持两板与电源相连,则电容器两极板间的电压U不变b 充电后断开电源,则带电量Q不变(4)电容的定义式:(定义式)(5)C由电容器本身决定。对*行板电容器来说C取决于:(决定式)(6)电容器所带电量和两极板上电压的变化常见的有两种基本情况:第一种情况:若电容器充电后再将电源断开,则
25、表示电容器的电量Q为一定,此时电容器两极的电势差将随电容的变化而变化。第二种情况:若电容器始终和电源接通,则表示电容器两极板的电压V为一定,此时电容器的电量将随电容的变化而变化。2、带电粒子在电场中的运动知识点总结(1)带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同:先分析受力情况,再分析运动状态和运动过程(*衡、加速或减速,是直线还是曲线),然后选用恰当的规律解题。(2)在对带电粒子进行受力分析时,要注意两点:a 要掌握电场力的特点。如电场力的大小和方向不仅跟场强的大小和方向有关,还与带电粒子的电量和电性有关;在匀强电场中,带电粒子所受电场力处处是恒力;在
26、非匀强电场中,同一带电粒子在不同位置所受电场力的大小和方向都可能不同。b 是否考虑重力要依据具体情况而定:基本粒子:如电子、质子、粒子、离子等除有要说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力。(3)带电粒子的加速(含偏转过程中速度大小的变化)过程是其他形式的能和功能之间的转化过程。解决这类问题,可以用动能定理,也可以用能量守恒定律。如选用动能定理,则要分清哪些力做功?做正功还是负功?是恒力功还是变力功?若电场力是变力,则电场力的功必须表达成,还要确定初态动能和末态动能(或初、末态间的动能增量)如选
27、用能量守恒定律,则要分清有哪些形式的能在变化?怎样变化(是增加还是减少)?能量守恒的表达形式有:a 初态和末态的总能量(代数和)相等,即b 某种形式的能量减少一定等于其它形式能量的增加c 各种形式的能量的增量的代数和;(4)带电粒子在匀强电场中类*抛的偏转问题。如果带电粒子以初速度v0垂直于场强方向射入匀强电场,不计重力,电场力使带电粒子产生加速度,作类*抛运动,分析时,仍采用力学中分析*抛运动的方法:把运动分解为垂直于电场方向上的一个分运动匀速直线运动:;另一个是*行于场强方向上的分运动匀加速运动,粒子的偏转角为。经一定加速电压(U1)加速后的带电粒子,垂直于场强方向射入确定的*行板偏转电场
28、中,粒子对入射方向的偏移,它只跟加在偏转电极上的电压U2有关。当偏转电压的大小极性发生变化时,粒子的偏移也随之变化。如果偏转电压的变化周期远远大于粒子穿越电场的时间,则在粒子穿越电场的过程中,仍可当作匀强电场处理。应注意的问题:1、电场强度E和电势U仅仅由场本身决定,与是否在场中放入电荷 ,以及放入什么样的检验电荷无关。而电场力F和电势能两个量,不仅与电场有关,还与放入场中的检验电荷有关。所以E和U属于电场,而和属于场和场中的电荷。2、一般情况下,带电粒子在电场中的运动轨迹和电场线并不重合,运动轨迹上的一点的切线方向表示速度方向,电场线上一点的切线方向反映正电荷的受力方向。物体的受力方向和运动
29、方向是有区别的。只有在电场线为直线的电场中,且电荷由静止开始或初速度方向和电场方向一致并只受电场力作用下运动,在这种特殊情况下粒子的运动轨迹才是沿电力线的。3、点电荷的电场强度和电势(1)点电荷在真空中形成的电场的电场强度,当源电荷Q0时,场强方向背离源电荷,当源电荷为负时,场强方向指向源电荷。但不论源电荷正负,距源电荷越近场强越大。(2)当取时,正的源电荷电场中各点电势均为正,距场源电荷越近,电势越高。负的源电荷电场中各点电势均为负,距场源电荷越近,电势越低。(3)若有n个点电荷同时存在,它们的电场就互相迭加,形成合电场,这时某点的电场强度就等于各个点电荷在该点产生的场强的矢量和,而某点的电
30、势就等于各个点电荷在该点的电势的代数和。高二物理知识点6一、静电的利用1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。2、利用高压静电产生的电场,应用有:静电保鲜、静电灭菌、作物种子处理等。3、利用静电放电产生的臭氧、无菌消毒等雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。二、静电的防止静电的主要危害是放电火花,如油罐车运油时,因为油与金属的振荡摩擦,会产生静电的积累,达到一定程度产生火花放电,容易引爆燃油,引起事故,所以要用一根铁链拖到地上,以导走产生的
31、静电。另外,静电的吸附性会使印染行业的染色出现偏差,也要注意防止。2、防止静电的主要途径:(1)避免产生静电。如在可能情况下选用不容易产生静电的材料。(2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。高二物理知识点7重点分析:1、17-20世纪自然科学发展的原因这一时期,人类历史处于大变动时期,资本主义在全世界确立并得到迅速发展,资本主义工业和商品经济的发展为近代自然科学的发展奠定了物质基础并成为主要动力。文艺复兴和宗教改革以前面向世界,重视实践和理性的风气,促进了科学的发展。一批优秀科学家实践和刻苦钻研,也促进了科学的发展。2、牛顿力学体系建立的巨大意义1687年,牛顿发表了
32、自然哲学的.数学原理,把物体的运动规律概括为运动三大定律和万有引力定律,由此建立起一个完整的力学理论体系,即牛顿力学体系。牛顿力学体系正确反映了宏观物体低速运动的客观规律,把过去一向认为是截然无关的物体运动规律概括在一个统一理论中,实现了自然科学的第一次理论性的大综合,这是人类对自然界认识的一个飞跃。牛顿力学是整个力学和天文学的基础,也是现代一切机械、土木建筑、交通运输等工程技术的理论基础。3、量子理论的诞生和发展1900年,德国物理学学普朗克提出量子假说,这个假说宣告了量子理论的诞生。量子理论的出现曾遭到许多物理学家的反对。首先意识到量子概念的普遍意义,并将它运用到其他问题上的是爱因斯坦。后
33、来有人又提出氩原子结构以后,利用量子理论成功地解释了光电效应出现的现象及光的本质,进一步推动了量子理论的发展。4、物理学大发展导致科学革命20世纪物理学的大发展对世界各方面和领域都产生了革命性影响,主要表现在三个方面:一是对其他学科的影响,包括对既有学科的影响,如物理学、生物学、化学向纵深拓展;还包括在它的影响下出现了一些新的学科,如核物理、离子化学、纳米科学、激光科学、高能物理学等。二是理论突破对科学技术和生产力产生巨大的推动作用。理论上的突破创新很快发展为新兴的科学技术,转化为现实的生产力,如半导体、集成电路、激光、核电站、计算机技术、转基因食品等,推动了第三次工业革命的浪潮。三是对哲学的
34、影响。现代物理学向人们展示了与传统观念完全不同的时空,并大大拓展了人类的认识领域和范围,彻底改变了人们的时空观念和认识论、方法论,打破了同时性等僵化观念。分析哲学在西方影响最广,以至一些西方哲学家称20世纪为“分析的时代”,而“分析哲学是在19世纪末20世纪初自然科学的伟大革命的推动下产生的”。这其中,重要的是以相对论和量子力学为代表的物理学革命。高二物理知识点81.磁感线的概念在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。2.磁感线的特点(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极(2)磁感线是闭合曲线(3)磁感线不相交(4)磁感线的疏
35、密程度反映磁场的强弱,磁感线越密的地方磁场越强3.几种典型磁场的磁感线(1)条形磁铁(2)通电直导线a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;b.其磁感线是内密外疏的同心圆(3)环形电流磁场a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。b.所有磁感线都通过内部,内密外疏(4)通电螺线管a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向;b. 通电螺线管的磁场相当于条形磁铁的磁场高二物理知识点9一、磁场:1、磁场
36、的基本性质:磁场对放入其中的磁极、电流有磁场力的作用;2、磁铁、电流都能能产生磁场;3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;1、磁感线是人们为了描述磁场而人为假设的线;2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;3、磁感线是封闭曲线;三、安培定则:1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;2、环形电流的磁感线:让右手弯曲的四指和
37、环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);五、磁感应强度:磁感应强度是描述磁场强弱的物理量。1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)3、磁感应强度的国际单位:特斯拉T,1T=1N/A.m六、安培力:磁场对电流的作用力
38、;1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。高二物理知识点10预习通读一遍教材,去了解和接受新的物理概念,找到它的特点,提前知道公式和定理等。把不明白的地方作记号,等后面深入学习时解决或者问老师。新旧知识是一个继承关系,并不是割裂独立的。预习新知识的时候,要联系前面学过的知识,发现哪里不会不明白不清楚,要赶紧补回来,因为老师默认你已经会啦!扫除这些“绊脚石”,才能立即理解课堂上老师讲的新课。预习也要注意时间和效率,一般优先预习自己不擅长的科目,拒绝苦思冥想(其实是在发呆?),完全可以把问题留到上课听讲的时候解决!尝试自己画出
39、知识点脉络图,能够全面了解整本书的知识点和考点。听课课堂是学习的主要场所,听课是学习的主要过程,听课的效率如何,决定着学习的主要状况。提高听课效率要注意:课前预习要有针对性。钻研课本要咬文嚼字,注意辨析。概念理解要准确,对概念的确切含义要通过实际例子情景化(例静摩擦力中“一起运动”“有运动趋势”,运动学中“二秒”、“第二秒”、“二秒末”,“速率相等”“速度相同”,自由落体中的“真空”“静止开始”等)。所谓辨析,就是要把容易混淆的概念放到一起,认真对比其差异。如重力和质量,重力与压力,速度与加速度,变化大小和变化快慢,匀变速与匀速等等。听课过程要全神贯注,特别要注意老师讲课的开头和结尾,老师讲课
40、开头,一般慨括前一节课的要点和指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对本节课所讲知识的归纳总结,具有高度的慨括性,是在理解基础上掌握本节知识方法的纲要。复习做好及时的复习。上完课的当天,必须做好当天的复习。复习的有效方法不只是一遍遍的看书和笔记,最好是采取回忆式的复习:先把书、笔记合起来回忆上课使老师讲的内容,例如分析问题的思路、方法等(也可以边回忆边在草稿上写一写),尽量想得完整些,然后大开笔记本和书对照一下,还有哪些没己清楚的,把它补起来,这样就使得当天上课的内容巩固下来了,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效率提出必要的改进措施。
41、做好章节复习,学完一章后应进行阶段性复习,复习方法也采用回忆式复习,而后与书、笔记相对照,使其内容完善。做好章节总结。善于总结,才能触类旁通,才能举一反三,才能使书越读越薄。章节总结内容应包括以下部分:本章的知识网络,主要知识内容,定理、定律、公式、解题的基本思路和方法、常规典型题型、物理模型等。练习高中学生面对练习题,应仔细审题,尝试着在根据题目的描述在头脑中形成一个物理情景,并根据物体运动所满足的条件作出判断,再根据物体的运动规律列出方程求解。针对错解,积极反思。有的同学对反馈信息的利用很不到位,往往把老师批改过的作业匆匆看一眼对错,就塞到抽屉里,到底错在哪里?为什么这样会错?怎样做才是对的?都没有深究,仅仅停留在看符号的层面上。其实在老师批改过的作业中,蕴涵着丰富的学习信息,你学习中的知识性错误、方法性缺陷都会在作业中暴露无疑。因此,外面应该非常重视作业和考试中的错解,对错解进行积极的反思,分析为什么会错的原因,应该怎样做才是正确的,并当即订正。我们应该建立一本物理“病历卡”,把每次作业及考试中的错误解法和正确解法都记录下来,以备日后用零星时间常常复习和巩固,做到错了一次一定不能错第二次,这样,你做题的正确率会越来越高,成绩会越来越好。