2023年初中数学教案:一元一次方程的应用.docx

上传人:1398****507 文档编号:81889053 上传时间:2023-03-24 格式:DOCX 页数:45 大小:35.97KB
返回 下载 相关 举报
2023年初中数学教案:一元一次方程的应用.docx_第1页
第1页 / 共45页
2023年初中数学教案:一元一次方程的应用.docx_第2页
第2页 / 共45页
点击查看更多>>
资源描述

《2023年初中数学教案:一元一次方程的应用.docx》由会员分享,可在线阅读,更多相关《2023年初中数学教案:一元一次方程的应用.docx(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年初中数学教案:一元一次方程的应用时间:2023-09-25 初中数学教案:一元一次方程的应用。 每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的初中数学教案:一元一次方程的应用,仅供参考,大家一起来看看吧。 教材分析本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知

2、识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。 学情分析1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。2:学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在

3、错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。 4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。 5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。教学目标(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,

4、列出一元一次方程解简单的应用题。(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国*,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。教学重点和难点 1教学重点:根据题意寻找和;差;倍;分问题的相等关系2教学难点:根据题意列出一元一次方程 教学过程 教学环节 教师活动 预设学生

5、行为 设计意图 一、从学生原有的认知结构提出问题 师生问好. 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题 例1 某数的3倍减2等于某数与4的和,求某数 (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)(3-1)=3 答:某数为3 (其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4 解之,得x=3 答:某数为3 纵观例1的这两种解法,很明显,算术方

6、法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一 我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程 本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤 习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。 教师借助于旧知识的回顾,引出本节课的主题,既注意到新旧知识之间的联系,又激发了学生对问题探究的热情. 二、师生共同分析、研究一元一次方

7、程解简单应用题的方法和步骤 例2 某面粉仓库存放的面粉运出 15后,还剩余42 500千克,这个仓库原来有多少面粉? 师生共同分析: 1本题中给出的已知量和未知量各是什么? 2已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量) 3若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15x千克,由题意,得 x-15x=42 500, 所以 x=50 000 答:原来有 50 000千克面粉 此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么? (

8、还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程; (2)例2的解方程过程较为简捷,同学应注意模仿 依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下: (1)仔细审题,透彻理解题意即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数; (2)根据题意找出能够表示应用题全部含义的一个相等关系(这是关键一步); (

9、3)根据相等关系,正确列出方程即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等; (4)求出所列方程的解; (5)检验后明确地、完整地写出答案这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义 例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果? (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误

10、并严格规范书写格式) 解:设第一小组有x个学生,依题意,得 3x+9=5x-(5-4), 解这个方程: 2x=10, 所以 x=5 其苹果数为 3 5+9=24 答:第一小组有5名同学,共摘苹果24个 学生板演后,引导学生探讨此题是否可有其他解法,并列出方程 (设第一小组共摘了x个苹果,则依题意,得) 抓不准相等关系 由一般到特殊,引出新课,内容更贴近实际生活了,使学生认识到学有所用,同时提高了解决实际问题的能力 三、课堂练习 1买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元? 2我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的

11、储蓄存款的 18倍还多4亿元求1978年末的储蓄存款 3某工厂女工人占全厂总人数的 35,男工比女工多 252人,求全厂总人数 学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。 随着教师一个个准确、恰当的问题,引发了学生在不知不觉中步步推进、层层深入思考与探索. 教学中注意鼓励的评价作用,让全体学生主动参与、积极思考,培养学生合作交流的学习习惯. 四、师生共同小结 1本节课学习了哪些内容? 2列一元一次方程解应用

12、题的方法和步骤是什么? 3在运用上述方法和步骤时应注意什么? 依据学生的回答情况,教师总结如下: (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案其中第三步是关键; (2)以上步骤同学应在理解的基础上记忆 五、作业 1买3千克苹果,付出10元,找回3角4分问每千克苹果多少钱? 2用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米? 3某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台这家工厂前年10月生产电视机多少台? 4大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装

13、满后还剩余2千克洗衣粉求每个小箱子里装有洗衣粉多少千克? 5把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元求得到一等奖与二等奖的人数 学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。 板书设计 一元一次方程解简单应用题的方法和步骤 教师和学生板演 f132.CoM更多教案编辑推荐 人教版初中数学一元一次方程的应用教学设计 教材分析本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备

14、的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。 学情分析1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。2:学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来

15、部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。 4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。 5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。教学目标(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母

16、表示已知数的情况下,列出一元一次方程解简单的应用题。(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国*,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。教学重点和难点 1教学重点:根据题意寻找和;差;倍;分问题的相等关系2教学难点:根据题意列出一元一次方程 教学过程 教学环节

17、 教师活动 预设学生行为 设计意图 一、从学生原有的认知结构提出问题 师生问好. 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题 例1 某数的3倍减2等于某数与4的和,求某数 (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)(3-1)=3 答:某数为3 (其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4 解之,得x=3 答:某数为3 纵观例1的这两种

18、解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一 我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程 本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤 习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。 教师借助于旧知识的回顾,引出本节课的主题,既注意到新旧知识之间的联系,又激发了学生对问题探究的热情. 二、师生共同

19、分析、研究一元一次方程解简单应用题的方法和步骤 例2 某面粉仓库存放的面粉运出 15后,还剩余42 500千克,这个仓库原来有多少面粉? 师生共同分析: 1本题中给出的已知量和未知量各是什么? 2已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量) 3若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15x千克,由题意,得 x-15x=42 500, 所以 x=50 000 答:原来有 50 000千克面粉 此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式

20、?若有,是什么? (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量) 教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程; (2)例2的解方程过程较为简捷,同学应注意模仿 依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下: (1)仔细审题,透彻理解题意即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数; (2)根据题意找出能够表示应用题全部含义的一个相等关系(

21、这是关键一步); (3)根据相等关系,正确列出方程即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等; (4)求出所列方程的解; (5)检验后明确地、完整地写出答案这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义 例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果? (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题

22、时可能出现的各种错误并严格规范书写格式) 解:设第一小组有x个学生,依题意,得 3x+9=5x-(5-4), 解这个方程: 2x=10, 所以 x=5 其苹果数为 3 5+9=24 答:第一小组有5名同学,共摘苹果24个 学生板演后,引导学生探讨此题是否可有其他解法,并列出方程 (设第一小组共摘了x个苹果,则依题意,得) 抓不准相等关系 由一般到特殊,引出新课,内容更贴近实际生活了,使学生认识到学有所用,同时提高了解决实际问题的能力 三、课堂练习 1买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元? 2我国城乡居民 1988年末的储蓄存款达到 3 802亿元

23、,比 1978年末的储蓄存款的 18倍还多4亿元求1978年末的储蓄存款 3某工厂女工人占全厂总人数的 35,男工比女工多 252人,求全厂总人数 学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。 随着教师一个个准确、恰当的问题,引发了学生在不知不觉中步步推进、层层深入思考与探索. 教学中注意鼓励的评价作用,让全体学生主动参与、积极思考,培养学生合作交流的学习习惯. 四、师生共同小结 1本节课学习了哪些内容? 2

24、列一元一次方程解应用题的方法和步骤是什么? 3在运用上述方法和步骤时应注意什么? 依据学生的回答情况,教师总结如下: (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案其中第三步是关键; (2)以上步骤同学应在理解的基础上记忆 五、作业 1买3千克苹果,付出10元,找回3角4分问每千克苹果多少钱? 2用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米? 3某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台这家工厂前年10月生产电视机多少台? 4大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个

25、同样大小的小箱里,装满后还剩余2千克洗衣粉求每个小箱子里装有洗衣粉多少千克? 5把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元求得到一等奖与二等奖的人数 学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。 板书设计 一元一次方程解简单应用题的方法和步骤 教师和学生板演 初中七年级数学说课稿:一元一次方程 一元一次方程的应用第一课时说课说案一:教材分析:(说教材)1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难

26、点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。2:教育教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。(2)能力目标:通过教学初步培养学生分析问题,解

27、决实际问题,综合归纳整理的能力,以及理论联系实际的能力。(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国*,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。 3:重点,难点以及确定的依据:根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问

28、题能力弱,对理论联系实际的问题的理解难度大。 二:学情分析:(说学法)1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。2:学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能

29、简单明了。 4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。 5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。三:教学策略:(说教法)如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:1:“读(看)议讲”结合法2:图表分析法3:教学过程中坚持启发式教学的原则教学的理论依据是:1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示

30、这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有X千克面粉”写成“设原来有X”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“X”“15%X”“42500”的单位都

31、是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。 初中二元一次方程数学教案三篇 教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。小编准备了以下内容,供大家参考! 篇一:应用二元一次方程组鸡兔同笼 教学目标: 知识与技能目标

32、: 通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题初步体会解二元一次方程组的基本思想“消元”。 培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。 过程与方法目标: 经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。 情感态度与价值观目标: 1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识. 2通过鸡兔同笼,把同学们带入古代的数学问题情景,学生体会到数学中的趣;进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培

33、养学生的人文精神。重点: 经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。 难点: 确立等量关系,列出正确的二元一次方程组。 教学流程: 课前回顾 复习:列一元一次方程解应用题的一般步骤 情境引入 探究1:今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何? (1)画图法 用表示头,先画35个头 将所有头都看作鸡的,用表示腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔子(12只),两条腿的是鸡(23只) (2)一元一次方程法: 鸡头兔头35 鸡脚兔脚9

34、4 设鸡有x只,则兔有(35x)只,据题意得: 2x4(35x)94 比算术法容易理解 想一想:那我们能不能用更简单的方法来解决这些问题呢? 回顾上节课学习过的二元一次方程,能不能解决这一问题? (3)二元一次方程法 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? (1)上有三十五头的意思是鸡、兔共有头35个, 下有九十四足的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡足有2x只;兔足有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35足2x4y94 解此方程组得: 练习1: 1.设甲数为x,乙数为y,则“甲数的二倍与

35、乙数的一半的和是15”,列出方程为_2x+05y=15 2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65. 三、合作探究 探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何? 题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺? 找出等量关系: 解:设绳长x尺,井深y尺,则由题意得 x=48 将x=48y=11。 所以绳长4811尺。 想一想:找出一种更简单的创新解法吗? 引导学生逐步得出更简单的方法: 找出等量

36、关系: (井深+5)3=绳长 (井深+1 解:设绳长x尺,井深y尺,则由题意得 3(y+5)=x 4(y+1)=x x=48 y=11 所以绳长48尺,井深11尺。 练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B). 归纳: 列二元一次方程解决实际问题的一般步骤: 审:审清题目中的等量关系 设:设未知数 列:根据等量关系,列出方程组 解:解方程组,求出未知数 答:检验所求出未知数是否符合题意,写出答案 四、自主思考 探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。

37、现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板用完? 解:设做竖式纸盒X个,横式纸盒y个。根据题意,得 x+2y=1000 4x+3y=2000 解这个方程组得x=200 y=400 答:设做竖式纸盒200个,横式纸盒400个,恰好使库存的纸板用完。 练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完? 解:设做竖式纸盒x个,做横式纸盒y个,根据题意 y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完 归纳: 五、达标测评 1.解下列应用题 (1

38、)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张? 解:设4分邮票x张,8分邮票y张,由题意得: 4x+8y=6800 y-x=40 所以,4分邮票540张,8分邮票580张 (2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天 的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成 分析:由于工作总量未知,我们将其设为单位1 晴天一天可完成 雨天一天可完成 解:设晴天x天,雨天y天,工作总量为单位1,由题意得: 总天数:7+10=17 所以,共17天可完成任务 六、应用提高 学校买铅笔、圆珠笔和钢笔

39、共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支? 分析:铅笔数量+圆珠笔数量+钢笔数量=232 铅笔数量=圆珠笔数量4 铅笔价格+圆珠笔价格+钢笔价格=300 解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组: 将代入和中,得二元一次方程组 4y+y+z=232 0.64y+2.7x+6.3z=300 解得 所以,铅笔175支,圆珠笔44支,钢笔12支 七、体验收获 1.解决鸡兔同笼问题 2.解决以绳测井问题 3.解应用题的一般步骤 七、布置作业 教材116页习题第2、3题。 x+y=3

40、5 2x+4y=94 x=23 y=12 绳长的三分之一-井深=5 绳长的四分之一-井深=1 -y=5 -,得 -y=1 -y=5 -y=5 -y=5 X=540 Y=580 y-x=3 x=7 y=10 x+y+z=232 x=4y 0.6x+2.7y+6.3z=300 X=176 Y=44 Z=12 篇二 :二元一次方程组的解法代入法教学内容:人教版七年级数学下册第八章二元一次方程组第2节p96页 教学目标 (1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。 (2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。 (3)情

41、感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。 教学重、难点关键 教学重点:用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。 教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调

42、动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。 教学内容分析:本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。 教具准备教师准备:ppt多媒体课件投影仪 教学方法本节课采用“问题引入探究解法归纳反思”的教学方法,坚持启发式教学。 教学过程 (一)创设情境,导入新课篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁