2023年-高考数学考试大纲,菁选2篇(精选文档).docx

上传人:w*** 文档编号:81024129 上传时间:2023-03-23 格式:DOCX 页数:16 大小:16.50KB
返回 下载 相关 举报
2023年-高考数学考试大纲,菁选2篇(精选文档).docx_第1页
第1页 / 共16页
2023年-高考数学考试大纲,菁选2篇(精选文档).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2023年-高考数学考试大纲,菁选2篇(精选文档).docx》由会员分享,可在线阅读,更多相关《2023年-高考数学考试大纲,菁选2篇(精选文档).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年*高考数学考试大纲,菁选2篇(精选文档)*高考数学考试大纲1本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一下面是我为大家整理的2023年*高考数学考试大纲,菁选2篇(精选文档),供大家参考。*高考数学考试大纲1本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微

2、分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。*高考数学考试大纲2一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义 函数的表示法 分段函数 隐函数(2)函数的性质单调性 奇偶性 有界性 周期性(3)反函数反函数的定义

3、反函数的图像(4)基本初等函数幂函数 指数函数 对数函数 三角函数 反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。(2)理解函数的单调性、奇偶性、有界性和周期性。(3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。(4)熟练掌握函数的四则运算与复合运算。(5)掌握基本初等函数的性质及其图像。(6)了解初等函数的概念。(7)会建立简单实际问题的函数关系式。(二)极限1.知识范围(1)数列极限的概念数列 数列极限的定义(2)数列极限的性质

4、唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义(4)函数极限的性质唯一性 四则运算法则 夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。(2)了解极限的有关性质,掌握极限的四则运算法则。(3)理解无穷小量、无穷大量的概念,掌

5、握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。(4)熟练掌握用两个重要极限求极限的方法。(三)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义 左连续与右连续 函数在一点处连续的充分必要条件 函数的间断点及其分类(2)函数在一点处连续的性质连续函数的四则运算 复合函数的连续性 反函数的连续性(3)闭区间上连续函数的性质有界性定理 最大值与最小值定理 介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在

6、一点处的连续性的方法。(2)会求函数的间断点及确定其类型。(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。二、一元函数微分学(一)导数与微分1.知识范围(1)导数概念导数的定义 左导数与右导数 函数在一点处可导的充分必要条件 导数的几何意义与物理意义 可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算 反函数的导数 导数的基本公式(3)求导方法复合函数的求导法 隐函数的求导法 对数求导法 由参数方程确定的函数的求导法 求分段函数的导数(4)高阶导数高阶导数的定义 高阶导数的计算(5)微分微分的定义 微分与

7、导数的关系 微分法则 一阶微分形式不变性2.要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。(2)会求曲线上一点处的切线方程与法线方程。(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。(5)理解高阶导数的概念,会求简单函数的 阶导数。(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。(二)微分中值定理及导数的应用1.知识范围(1)微分中值定理罗尔(Rolle)定理 拉格朗日(Lagra

8、nge)中值定理(2)洛必达(LHospital)法则(3)函数增减性的判定法(4)函数的极值与极值点 最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水*渐近线与铅直渐近线2.要求(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。会用罗尔定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。(2)熟练掌握用洛必达法则求各种型未定式的极限的方法。(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式。(4)理解函数极值的概念。掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题。(5)会判断曲线的凹凸性,会求曲线的拐点。(6)会

9、求曲线的水*渐近线与铅直渐近线。(7)会作出简单函数的图形。三、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的定义 原函数存在定理 不定积分的性质(2)基本积分公式(3)换元积分法第一换元法(凑微分法) 第二换元法(4)分部积分法(5)一些简单有理函数的积分2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。(2)熟练掌握不定积分的基本公式。(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。(4)熟练掌握不定积分的分部积分法。(5)会求简单有理函数的不定积分。(二)定积分1.知识范围(1)定积分的概

10、念定积分的定义及其几何意义 可积条件(2)定积分的性质(3)定积分的计算变上限积分 牛顿莱布尼茨(Newton-Leibniz)公式 换元积分法 分部积分法(4)无穷区间的广义积分(5)定积分的应用*面图形的面积 旋转体体积 物体沿直线运动时变力所作的功2.要求(1)理解定积分的概念及其几何意义,了解函数可积的条件。(2)掌握定积分的基本性质。(3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。(4)熟练掌握牛顿莱布尼茨公式。(5)掌握定积分的换元积分法与分部积分法。(6)理解无穷区间的广义积分的概念,掌握其计算方法。(7)掌握直角坐标系下用定积分计算*面图形的面积以及*面图形

11、绕坐标轴旋转所生成的旋转体体积。会用定积分求沿直线运动时变力所作的功。四、向量代数与空间解析几何(一)向量代数1.知识范围(1)向量的概念向量的定义 向量的模 单位向量 向量在坐标轴上的投影 向量的坐标表示法 向量的方向余弦(2)向量的线性运算向量的加法 向量的减法 向量的数乘(3)向量的数量积二向量的夹角 二向量垂直的充分必要条件(4)二向量的向量积 二向量*行的充分必要条件2.要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。(3)熟练掌握二向量*行、垂直的充分必要条件。(二)*面与直

12、线1.知识范围(1)常见的*面方程点法式方程 一般式方程(2)两*面的位置关系(*行、垂直和斜交)(3)点到*面的距离(4)空间直线方程标准式方程(又称对称式方程或点向式方程)一般式方程 参数式方程(5)两直线的位置关系(*行、垂直)(6)直线与*面的位置关系(*行、垂直和直线在*面上)2.要求(1)会求*面的点法式方程、一般式方程。会判定两*面的垂直、*行。会求两*面间的夹角。(2)会求点到*面的距离。(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线*行、垂直。(4)会判定直线与*面间的关系(垂直、*行、直线在*面上)。(三)简单的二次曲面1.知识范围球面 母线*行

13、于坐标轴的柱面 旋转抛物面 圆锥面 椭球面2.要求了解球面、母线*行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。五、多元函数微积分学(一)多元函数微分学1.知识范围(1)多元函数多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念(2)偏导数与全微分偏导数 全微分 二阶偏导数(3)复合函数的偏导数(4)隐函数的偏导数(5)二元函数的无条件极值与条件极值2.要求(1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条

14、件。(3)掌握二元函数的一、二阶偏导数计算方法。(4)掌握复合函数一阶偏导数的求法。(5)会求二元函数的全微分。(6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。(7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。(二)二重积分1.知识范围(1)二重积分的概念二重积分的定义二重积分的几何意义(2)二重积分的性质(3)二重积分的计算(4)二重积分的应用2.要求(1)理解二重积分的概念及其性质。(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、*面薄板质量)。六、无穷级数(一)数项级数1.

15、知识范围(1)数项级数数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法 比值判别法(3)任意项级数交错级数 绝对收敛 条件收敛 莱布尼茨判别法2.要求(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。(2)掌握正项级数的比值判别法。会用正项级数的比较判别法。(3)掌握几何级数、调和级数与级数的收敛性。(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。(二)幂级数1.知识范围(1)幂级数的概念收敛半径 收敛区间(2)幂级数的基本性质(3)将简单的初等函数展开为幂级数2.要求(1)了解幂级数的概念。(2

16、)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。(4)会运用麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为幂级数。七、常微分方程(一)一阶微分方程1.知识范围(1)微分方程的概念微分方程的定义 阶 解 通解 初始条件 特解(2)可分离变量的方程(3)一阶线性方程2.要求(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。(2)掌握可分离变量方程的解法。(3)掌握一阶线性方程的解法。(二)可降价方程1.知识范围(1) 型方程(2) 型方程2.要求(1)会用降阶法解 型方程。(2)

17、会用降阶法解 型方程。(三)二阶线性微分方程1.知识范围(1)二阶线性微分方程解的结构(2)二阶常系数齐次线性微分方程(3)二阶常系数非齐次线性微分方程2.要求(1)了解二阶线性微分方程解的结构。(2)掌握二阶常系数齐次线性微分方程的解法。(3)掌握二阶常系数非齐次线性微分方程的解法。考试形式及试卷结构试卷总分:150分考试时间:150分钟考试方式:闭卷,笔试试卷内容比例:函数、极限和连续 约15%一元函数微分学 约25%一元函数积分学 约20%多元函数微积分(含向量代数与空间解析几何) 约20%无穷级数 约10%常微分方程 约10%试卷题型比例:选择题 约15%填空题 约25%解答题 约60%试题难易比例:容易题 约30%中等难度题 约50%较难题 约20%

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁