《电子英文翻译.pdf》由会员分享,可在线阅读,更多相关《电子英文翻译.pdf(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 光 电 技 术 学 院 毕 业 生 文 献 翻 译 电子技术基础 学生姓名:邓富明 专 业:电子科学与技术 班 级:电科光电子 20072 导师姓名(职称):石朝阳(高级实验师)文 献 提 交 日 期:2011 年 03 月 01 日 电子技术基础 一、引言:这本书的目的是让读者更好的理解数字、模拟电路的基本原则。它强调完整电路的应用与设计;然而,当电路设计是为了进行了总体设计以及特定系统的电路其中的一员的时候最有效。因此,第一章将呈现电子系统概述,一般的讨论中步骤在他们的设计中,基本概念与数字系统以及电子功率放大器是相关的。电子电路设计是有趣的。你能够获得一份好的生活以及让许多人认为电子像
2、魔法。在这本书里,作为一名电子系统的设计师,学习材料是迈向有意义的职业的重要一步。二、电子系统:一些电子系统在日常生活中是很熟悉的。例如,每天我们能遇到收音机、电视机、电话以及电脑。其他的电子系统呈现在我们的日常生活中,但并不那么明显。电子系统控制混合气和点火时间,最大限度地表现和减少不受欢迎的汽车发动机的排放量。在气象卫星中,它给我们提供关于我们星球的持续而详尽的图片资料。还有其他不熟悉的系统。例如,一种被称为全球定位系统的卫星系统已经被美国研制成功,它能够为美国提供在世界上任何地方的船只和飞机的三维位置信息,精度可达几万米。这能实现是因为由许多卫星发射的信号能被运载工具接受。通过比较到达的
3、时间以及利用特定的信息信能接收到与轨道卫星有关的信号,车辆的位置被确定。此外,接收到的信号可加工设定一个精确性100ns的本地时钟。他的电子系统包括空中交通管制系统、各种雷达、简易录音设备和播放器、双向无线电为警察和船用通信、卫星电视和来自地球同步轨道上的其他信号、电子仪器、生产控制系统、应用于重病护理房病人的电脑监控器以及导航系统。2.1、电子系统框图 电子系统是有子系统或功能块组成。这些功能块可以分为几类,如:功率放大器、过滤器、信号源、整形电路、数字逻辑功能、数位记忆、电源以及转换器。简而言之,我们可以说,放大器能提高弱信号功率电平过滤器从不理想的信号和噪声中分离出理想信号,信号源产生波
4、形例如正弦曲线或广场波,整形电路把一种波形转换成另一种波形(例如:把正弦波变成广场波),数字逻辑功能过程数字信号,数字形式的记忆储存信息,电源给其他功能块提供必要的直流电源,以及 转换器将模拟信号转换成数子信号,反之亦然。在本章后面,我们会仔细考虑放大器的外部特性。这本书的主要目的是让你一开始就从外部模块中获得基本技能,例如:放大器以及实际的电路设计符合预期的根据。为复杂的电子系统选择适当的框图是包含在其他课程中,例如:控制系统、计算机结构、数字信号处理或通信系统。2.2、信息处理与电力电子 许多电子系统落入一个或多个上述的类别:数字信号处理系统、通信系统、医疗电子、仪表、控制系统、以及计算机
5、系统。这些类别的统一的方面是,他们都涉及携带信号的采集与处理过程。因此,许多电子系统主要关心的是信号的提取液、储存、运输和信息的处理过程。经常,系统也需要提供实质性的能量输出设备。当然,在音频系统,电源必须输送给喇叭产生理想的音量。在一种通信卫星的自动定位的控制系统中,从许多不同源提取的信息是用来控制小卫星所提供的火箭发动机处在正常位置和方向。一个心脏起搏器的提取的电子信号信息来决定何时应用一次电流脉冲刺激,一分钟的电流脉冲,以保证泵的正常行动。虽然起搏器的输出功率是很小的,为了确保电池的使用寿命长考虑它的电路的效率是非常重要的。一些电子系统主要涉及电力信号而不是信息。例如:我们可能会想要一个
6、电脑系统提供交流电(转换由电池提供的直流电),即使当交流线路电力失败了。2.3、模拟与数字系统 携带信息可以是模拟或数字,模拟信号作为一种连续范围的振幅值。输入了电子传感器统的最初的信号通常是模拟形式。(传感器是一种装置,它能转换能量,或从,电性形态。)以模拟信号为例,声音转换为电子信号由话筒,电视信号,地震振动,温度传感器的输出在汽轮机,等等。其他的信号,如电脑键盘的输出,产于数字形式。三、运算放大器:射频滤波器 射频放大器 混频器 中频滤波 中频放大 峰值检测器 音频放大器 数字控制 频率合成器 本地振荡器 键盘 显示 数码记忆 天线 扬声器 在第一章,我们讨论了一般放大器的外部特征。在这
7、一章中,我们介绍了一个重要的电子积木的运算放大器而闻名。目前,这个词运算放大器,或不那么正式,运算放大器,是指集成电路中的一般用途的应用广泛就业。然而,这种类型的放大器在模拟计算机电路,在其被用来执行作为整合或营运,而且这种信号,由此得名运算放大器。我们将会看到,运算放大器是最有用的输出信号的一部分返回到通过反馈网络的输入。然后,在信号流从输入闭环通过运算放大器的输出,并通过网络反馈回输入到那时,我们说,该电路是在闭环条件下运行。当反馈不存在,我们说,这些电路的特性,可依赖的电路结构和电阻值,但只有微弱的运算放大器-它可以在一些大单位对单位的变化它的参数。3.1、理想运算放大器 对于运算放大器
8、的电路符号如图2.1.The运算放大器是一种具有差分放大器反相和同相输入端。输入信号被表示为1()t和2()t。(像往常一样,我们用小写字母来表示一般时变电压。通常情况下,我们将省略时间依赖性和参考电压仅仅作为1,2,等等。)回想一下,输入电压的平均被称为共模信号icm,鉴于:12()/2icm 此外,与输入电压之差,称为差分信号,12id 是由 一个理想的运算放大器具有以下特点:无限的输入阻抗。无限开环增益的差分信号。零增益的共模信号。零输出阻抗。无限带宽。一个理想的运算放大器的等效电路只是一个受控源组成,开环增益非常大的最好是无限的。现在,我们假设开环增益为常数随频率和输出电压波形有相同的
9、差分输入(稍后,我们将看到这是一个真正的运算放大器频率的函数)。3.2、总结点约束 运算放大器几乎都是使用负反馈,其中运算放大器的输出信号的一部分,反对返回到源信号输入。(也可以制作正极性的反馈电路,其中返回到输入信号的原始源信号。然而,正如我们看到的,负反馈放大电路在放大电路更有用。)在以后的章节中我们将详细讨论负反馈。在这一章中,一个运算放大器电路的充分分析是通过假定理想运算放大器和被认为是总结性的概念。对于一个理想的运算放大器,我们假设开环增益OLA接近无限,那么即使一个很小的差分输入一个非常大的输出电压的电压。在负反馈电路,网络返回到无限的增益输出部分,则该驱动差分输入电压为零准确。由
10、于运算放大器的差分输入电压为零时,输入电流也为零。我们指的是,差分输入电压和输入电流被迫零的总结点约束的事实。理想运算放大器电路的分析工作由以下步骤:确认存在负反馈。通常,这需要在连接到输出端和反相输入端的电阻网络形式。假设差分输入电压和输入电流的运算放大器被迫为零。(这是总结点约束。)应用标准电路分析原理,如基尔霍夫定律和欧姆定律,以解决利益的数量。我们说明这分析中的一些常用电路接下来的几节类型。四、二极管和二极管电路:在本章和接下来的两章,我们介绍了最重要的电子装置,其基本电路的应用,许多有用的分析技术。在这一章中,我们讨论了二极管。首先,我们研究二极管及其应用电路的外部特征。然后,在最后
11、三节章,我们讨论了半导体二极管的内部运作。4.1、二极管特性 二极管是一个非常重要的电子设备,有两个码头:阳极和阴极。请注意,在这些特点中,如果二极管两端的电压D为正,相对小电压电流大量资金。这种情况被称为正向偏置。因此,电流容易通过在电路的符号箭头方向二极管。另一方面,D为中度负值,电流Di非常小。这就是所谓的反向偏置区域,如在二极管的特性所示。如果一个足够大的反向偏置电压施加到二极管,其运行的特征进入反向击穿区域,电流的流动幅度大。但在此二极管消耗的功率所产生的温度不是太高,反向击穿操作不破坏设备。事实上,我们可以经常看到,往往故意将二极管工作在反向击穿区域。4.2、小信号二极管 各种材料
12、和结构,用于制作二极管。现在,我们只限于我们讨论的小信号硅二极管常见于低功率和中等功率电子电路。一个来自几个厂家的分立二极管是1N418。集成电路二极管具有类似特性,小信号分立二极管。一个典型的小信号硅在一个300K的温度二极管的特性曲线运行图3.2所示。请注意,对于正向偏置区域的电压和电流鳞比反向偏置区域的不同。这有助于清晰地显示特色的细节,因为在反向偏置区域比在正向偏置区域中,电流幅度更小,而电压幅度更大。在正向偏置区域,小信号硅二极管需要的电流非常小(远小于1 mA),一个 正向电压为0.6V至0.7V(假设二极管在温度约30万)。然后,电流非常迅速伴随电压进一步增加。我们说,正向特性显
13、示在正向偏置特性约0.6V。随着温度的增加,电压降低约2毫伏/K。在反向偏置区域,在室温下小信号硅二极管,典型的电流约为1 nA。随着温度的升高,反向电流的幅度增加。一条经验法则是:温度每增加10K反向电流就增加两倍。当到达反向击穿的时候,电流的幅度迅速增加。该电压就被称为击穿电压。例如,在图4.2所示的二极管击穿电压大约为-100V。击穿电压范围从几伏到几百伏。有些应用要求,二极管工作在正向偏置和不导电的反向偏置,而不是工作在击穿电压区域。这些应用的目的是有一个二极管的击穿电压最低程度规范。4.3、理想二极管模型 当二极管电路的负载线分析提供了洞察力和准确的结果的时候,我们需要以简单的模式,
14、快速分析电路包含多个二极管。一个非常有用的模型是一个理想的二极管模型,它是一个零正向压降的完美导体。在相反的方向,是一个理想的二极管开路。我们用二极管的理想模型,如果我们的判断告诉我们,正向二极管压降和反向电流可以忽略不计,或者如果我们希望有一个基本的了解,而不是一个确切的分析电路,理想二极管的伏安特性如图4.4。如果Di呈阳性,则D是零,那我们就认为,二极管处于开放状态。另一方面,如果D是负数,则Di是零,那我们就认为,二极管处于关闭状态。当分析含有理想二极管的电路,我们可能不知道该二极管是事先哪些开放,哪些是关闭。因此,我们被迫作出猜测。然后,我们分析了电路中找到假定要在二极管之间的电流和
15、电压处于关闭状态。如果Di是正面的二极管假设上,且D是负的二极管假定处于关机状态,那么我们的假设是正确的,我们已经解决了电路。(我们假定Di被引用为正极前进方向和D被引用截至正极。)否则,我们必须再次对二极管的假设,然后再试一次。稍加练习之后,你的第一个猜测通常是正确 DiD 二极管关闭 二极管开放 图 4.4 的,至少简单的电路。五、场效应晶体管:场效应晶体管(FET)是,像电晶体,放大器和逻辑为交换机中使用的重要设备。我们将讨论几种类型的场效应晶体管。最重要的类型是增强型金属氧化物半导体场效应晶体管(MOSFET),这是主要的基础设备,已在数码电子发生在过去几十年的迅速发展。其他类型的两个
16、场效应管是耗尽型MOSFET和结场效应晶体管(JFET的)。与电晶体相比,MOSFET可以占用较少的芯片面积,可以用更少的处理步骤制作。如记忆复杂的数字电路和微处理器通常只用MOSFET实现。另一方面,电晶体是生产产量大,可用于快速电容负载,如电路板的痕迹,这数字芯片互连交换所需电流。每个类型的设备有一些应用中,它的性能比别的好。制作两种类型都相同的芯片和 MOSFET电晶体比独立制作其中一种需要更多的步骤。随着步数的增加,每个晶圆(产量)的良好的芯片数量下降,使得芯片更加昂贵。直到最近,这笔费用无法使用一个给定的芯片设备有许多不同类型的设计师。但是,现在把BJT和MOSFET都制作在一个单一
17、的芯片上还不是那么贵。该技术被称为BiCMOS和可用于制造更高性能的电路。5.1、NMOS晶体管 概述 一个N沟道增强型MOSFET物理结构(也称为一个NMOS晶体管)如图5.1。该设备终端是漏极(D),栅极(G)的源极(S)和基极(B)。(另一种常用的术语是基极衬底。)正常运行,通过基极末端电流可以忽略不计。在我们的NMOS的讨论中,我们常常认为基极是连接到源极,使我们有一个三端器件。闸阀是由一个绝缘的二氧化硅薄层,并通过栅极电流可以忽略不计基板。当一个足够大的(正)电压适用于门相对于源极,电子被吸引到下闸区和一个n型材料的漏极和源极之间引起的。然后,如果电压应用到漏之间的漏极和源极,电流流
18、过,并指出源极和漏极。漏极电流控制应用到门电压。通道长度L和宽度W如图5.1所示。长度的范围是从0.2到10m,宽度范围从0.5到500m。(回想一下6110mm。)二氧化硅层的厚度为0.05至o.1m。在MOS技术发展的早期,闸阀是铝合金制成。然而,在最现代的设备,闸阀有一种特殊类型的多晶硅硅称为层。设备特性取决于L,W,,工艺参数,如掺杂水平和所使用的氧化层厚度。通常,工艺参数是预定的,但电路设计人员可以调整 L和W到获得最佳适合给定应用的设备。5.2、偏置电路 放大器的电路分析通常采取两个步骤。首先,我们分析了直流电路,确定Q点。在这项分析中,非线性器件的特性曲线方程或使用。然后,在偏差
19、分析完成后,我们用线性小信号等效电路找到输入电阻,电压增益等。在集成多级放大器,各种设备的偏置点是相互依存的。另一方面,在分立电路,电容器可用于夫妇的阶段,每个阶段的偏置点可以建立独立于其他阶段,在这一节中,我们考虑的事RC耦合分立FET放大器的直流偏置电路的合理设计,主要是为了给你一个有关MOSFET、偏置和相关的概念的更好的了解,。偏置电路中的一节讨论也适用于JFETs。在以后的章节中,我们会考虑更多与集成电路设计相关的问题。这两个电池偏置电路在图5.7放大器使用的是不实际的。通常,只有一个直流电压可以利用,而不是两个可用。然而,更重要的问题是:从一个设备到另一个设备FET的参数变化很大。
20、在一般情况下,我们要建立载重线靠近中间的Q点,以致于输出信号可以在两个方向上都有而无衰减。当FET的参数从一个单位变化到另一个单位时,两电池电路能靠近一些偏置电路的一端或另一端。附件:Electronics 一、introduction:The goal of this book is to give the reader a good understanding of the basic principles of digital and analog electronic circuits.The book emphasizes the application and design of
21、integrated circuits;however,circuit design is most effective when it is carried out with a view toward the overall design process-as well as the particular system of which the circuit is to be a part.Therefore,this first chapter presents an overview of electronic system,a general discussion of the s
22、teps in their design,and basic concepts related to digital systems and electronic amplifiers.Electronic-circuit design is fun.You can earn a good living from it and impress many people to whom electronic seems like magic.Learning the material in this book is an important step toward a rewarding care
23、er as a designer of electronic systems.二、Electronic Systems:Some electronic systems are familiar from everyday life.For example,we encounter radios,televisions,telephones,and computers on a daily basis.Other electronic systems are present in daily life,but are less obvious.Electronic systems control
24、 fuel mixture and ignition timing to maximize performance and minimize undesirable emissions from automobile engines.Electronics in weather satellites provide us with a continuous detailed picture of our planet.Still other systems are even less familiar.For example,a system of satellites known as th
25、e Global Positioning System(GPS)has been developed by the United States to provide three-dimensional information for ships and aircraft anywhere on earth to an accuracy of several tens of meters.This is possible because signals emitted by several satellites can be received by the vehicle.By comparin
26、g the time of arrival of the signals and by using certain information contained in the received signals concerning the orbits of the satellites,the position of the vehicle can be determined.In addition,the received signals can be processed to set a local clock to an accuracy of about 100 ns.Other el
27、ectronic systems include the air-traffic control system,various radars,compact-disc recording equipment and players,two-way radios for police and marine communication,satellites that relay television and other signals from geosynchronous orbit,electronic instrumentation,manufacturing control systems
28、,computerized monitors for patients in intensive care units,and navigation systems.2.1、Electronic-System Block Diagrams Electronic systems are composed of subsystems or functional blocks.These functional blocks can be categorized as amplifiers,filters,signal sources,wave-shaping circuits,digital log
29、ic functions,digital memories,power supplies,and converters.Briefly,we can say that amplifiers increase the power level of weak signals,filters separate desired signals from undesired signals and noise,signal sources generate waveforms such as sinusoids or square waves,wave-shaping circuits change o
30、ne waveform into another(sinusoid to square wave,for example),digital logic functions process digital signals,memories store information in digital form,power supplies provide necessary dc power to the other functional blocks,and converters change signals from analog form to digital form or vice ver
31、sa.Later in this chapter,we consider the external characteristics of amplifiers in some details.The block diagram of an AM radio is shown in Figure 1.1.Notice that there are three amplifiers and two filters.The local oscillator is an example of a signal source,and the peak detector is a special type
32、 of wave-shaping circuit.Digital circuits appear in the user interface(keypad and display)and in the frequency synthesizer.The digital circuits control channel selection and other functions,such as loudness.The complete system description would include detailed specifications for each block.For exam
33、ple,the gain,input impedance,and bandwidth of each amplifier would be given.(We will carefully define these terms later.)Each functional block in turn consists of a circuit composed of resistors,capacitors,inductors,transistors,integrated circuits,and other devices.The main goal of this book is to g
34、ive you the basic skills needed to start from the external specifications of a block,such as an amplifier,and to design a practical circuit that meets the desired specifications.The selection of appropriate block diagrams for complex electronic systems is covered in other courses,such as control sys
35、tems,computer architecture,digital signal processing,or communication systems.2.2、Information Processing Versus Power Electronics Many electronic systems fall into one or more of these categories:digital signal-processing systems,communication systems,medical electronics,instrumentation,control syst
36、ems,and computer systems.A unifying aspect of these categories is that they all involve the collection and processing of information-bearing signals.Thus,the primary concern of many electronic systems is to extract,store,transport,or process the information in a signal.Often,systems are also require
37、d to deliver substantial power to an output device.Certainly,this is true in an audio system,for which power must be delivered to loudspeakers to produce the desired sound level.In a control system for automatic positioning of a communication satellite,information extracted from various sources is u
38、sed to control small rocket motors that maintain the satellite in its proper position and orientation.A cardiac pacemaker uses information extracted from the electrical signals produced by the heart to determine when to apply a stimulus in the form of a minute pulse of electricity to ensure proper p
39、umping action.Although the output power of a pacemaker is very small,it is very important to consider the efficiency of its circuits to ensure a long life for the battery.Some electronic systems are concerned mainly with the power content of signals,rather than information.For example,we might want
40、a system to deliver ac electrical power(converted from dc supplied by batteries)to a computer,even when the ac line power fails.2.3、Analog Versus Digital systems Information-bearing signals can be either analog or digital.An analog signal takes on a continuous range of amplitude values.The signals o
41、riginally presented to the input of an electronic system by a transducer are usually in analog form.(A transducer is a device that converts energy to,or form,electrical form.)Examples of analog signals are sounds converted to electrical signals by a microphone,television signals,seismic vibrations,t
42、he output of a temperature transducer in a steam turbine,and so on.Other signals,such as the output of a computer keyboard,originate in digital form.三、Operational Amplifiers:In Chapter 1,we discussed the external characteristics of amplifiers in general.In this chapter,we introduce an important elec
43、tronic building block known as the operational amplifier.Currently,the term operational amplifier,or,less formally,op amp,refers to an integrated circuit that is employed in a wide variety of general-purpose applications.However,this type of amplifier originated in analog computer circuits,in which
44、it was used to perform such operations as integration or addition of signalshence,the name operational amplifier.We will see that op amps are most useful when part of the output signal is returned to the input through a feedback network.Then the signal flows in a closed loop from the input through t
45、he op amp to the output and then through the feedback network back to the input,and we say that the circuit is operating in closed-loop conditions.When feedback is not present,we say that the characteristics of these circuits can be made to depend on the circuit configuration and the resistance valu
46、es,but only weakly on the op amp-which can have large unit-to-unit variations in some of its parameters.3.1、The Ideal Operational Amplifier The circuit symbol for the operational amplifier is illustrated in Figure 2.1.The operational amplifier is a differential amplifier having both inverting and no
47、ninverting input terminals.The input signals are denoted as 1()t and 2()t.(As usual,we use lowercase letters to represent general time-varying voltages.Often,we will omit the time dependence and refer to the voltages simply as 1,2,and so on.)Recall that the average of the input voltages is called th
48、e common-mode signal icm,given by 12()/2icm Also,the difference between the input voltages,called the differential signal,is given by 12id An ideal operational amplifier has the following characteristic:Infinite input impedance.Infinite open-loop gain OLAfor the differential signal.Zero gain for the
49、 common-mode signal.Zero output impedance.Infinite bandwidth.An equivalent circuit for the ideal operational amplifier consists simply of a controlled source,The open-loop gain OLA is very large-ideally infinite.For now,we assume that the open-loop gain OLA is constant versus frequency and the outpu
50、t voltage o has a waveshape identical to that of the differential input 12id(Later,we will see thatOLAis a function of frequency for real op amps).3.2、The Summing-Point Constraint Operational amplifiers are almost always used with negative feedback,in which part of the op-amp output signal is return