《材料腐蚀与防护.pdf》由会员分享,可在线阅读,更多相关《材料腐蚀与防护.pdf(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、材料腐蚀与防护 第一章 绪论 重点 1.金属的腐蚀::金属腐蚀后失去其金属特性,往往变成更稳定的化合物。金属腐蚀是普遍存在的一种自然规律,是不可避免的自然现象。2.均匀腐蚀速度的评定 重量法 g/(m2h)深度法 mm/a 容量法 电流密度法 目录 P9 腐蚀的定义 P10-11 腐蚀的过程及特点 P13 腐蚀的危害 P18-20 腐蚀的防护方法:隔离控制、热力学控制、动力学控制 P29-30 按腐蚀机理分类:化学腐蚀、电化学腐蚀、物理腐蚀 P31-38 按腐蚀形态分类:全面腐蚀、局部腐蚀、应力腐蚀 P39 按材料类型分类:金属材料、非金属材料 P41 腐蚀速度的评定 P42-49 均匀腐蚀的
2、评定:重量法、深度法、容量法、电流密度表征法 材料腐蚀与防护 第二章 金属腐蚀电化学理论基础 重点 1.电极系统:一个有电子导体相和离子导体相组成的,有电荷通过相界面在两个相之间转移的系统。2.电极反应:在电极系统中伴随着两个非同类导体之间的电荷转移而在两相界面上发生的化学反应。3.阳极反应:从还原体的体系向氧化体的体系转化(失电子)阴极反应:从氧化体的体系向还原体的体系转化(得电子)4.绝对电极电位:金属电极板浸入其盐溶液中,电子导体相(金属)与离子导体相之间的内电位差称为电极系统的绝对电极电位,用表示。相对电极电位:研究电极与参比电极组成的原电池电动势称为该电极的相对(电极)电位,用E表示
3、。5.双电层结构:金属极板表面上带有过剩负电荷;溶液中等量正电荷的金属离子受负电荷吸引,较多地集中在金属极板附近,形成所谓双电层结构。6.原电池与腐蚀电池的区别:原电池将化学能转化为电能,对外界做实际有用功,都十点吃由化学能转换为热能,做的实际有用功为0,即腐蚀电池只能导致金属材料破坏而不能对外界做有用功的短路原电池。7.化学位,单位摩尔数的物质M加入到相P所引起的吉布斯自由能的变量 电化学位:将单位摩尔的正离子Mn+移入相P时,引起的吉布斯自由能变化 8.平衡绝对电极电位的计算 9.相对电极电位和电动势 10.标准电位E:电极反应的各组分活度(或分压)都为1,温度为25oC时,压力为1 at
4、m 时的平衡电位Ee等于E,E称为标准电位。11.Nernst方程求平衡电位 12.电化学腐蚀的热力学判据:材料腐蚀与防护 EM,eEO,e,GEO,e,G0,腐蚀不能自发进行;EM,e=EO,e,G=0,腐蚀反应达到平衡;13.电动 序:将 各种 金属 的 标 准 电 位 的数值从小到大排列起来,就得到“电动序”或标准电位序。电动序可以用来粗略地判断金属的腐蚀倾向 14.电位-pH 图(Ee-pH图):是描绘电极的平衡电位与溶液pH值间的曲线。重点:氧电极和氢电极的电位-pH图、Fe-H2O系的电位-pH图 15.极化作用:由于通过电流而引起腐蚀电池两极间电位差减小,并因而引起电池工作电流降
5、低的现象 16.交换电流密度:当电极反应达到平衡时,反应速度为交换反应速度,阳极反应和阴极反应具有相同的电流密度,称为交换电流密度 17.电极反应动力学方程 18.外侧电流密度:19.Tafel方程式 20.极限扩散电流密度 21.扩散控制的动力学方程 22.混合电位:由于两个耦合的电极电位不同,彼此互相极化,它们偏离各自的平衡电位,极化到了一个共同的电位E,称为混合电位。23.腐蚀电位和腐蚀电流:如果在共轭反应中,阳极反应是金属的溶解,结果导致金属的腐蚀,这时混合电位又叫腐蚀电位Ecorr。相应于腐蚀电位下的阳极溶解电流称为腐蚀电流Icorr或腐蚀电流密度icorr。腐蚀电流密度 23.外测
6、电流密度也称为极化电流密度 材料腐蚀与防护 极化电流密度 24.腐蚀电流密度的影响因素 1)i0,a 和i0,c,交换电流密度越大,腐蚀电流密度越大 2)塔菲尔斜率,a,c越大,icorr 越小 3)平衡电位之差,Ee,aEe,c越大,icorr 越大 目录 一、腐蚀电池 P3-4 电极系统和电极反应的定义 P5-6 电极反应的分类 P8-9 电极反应的书写 P11-13 绝对电极电位、相对电极电位、平衡电极电位 P13-17 双电层结构(平板模型、扩散双电层模型)P18-20 原电池、电解池、腐蚀电池的定义及对比 P22-23 原电池与腐蚀电池的区别 P24-26 腐蚀电池的过程 二、电化学
7、腐蚀热力学 P30-31 化学位与电化学位 P34-36 电化学位的计算 P38 平衡绝对电极电位的计算 P39-44 相对电极电位以及电动势的计算 P46-51 Nernst方程求平衡电极电位 P48 标准电位E的定义,标准电位和平衡电位的区别 P54-56 电化学腐蚀的热力学判据 P57-60 由电极电位判断腐蚀发生的可能性的计算 P63 电动序的定义及意义 P65-67 氧电极和氢电极的电位-pH图 P69-75 Fe-H2O系的电位-pH图 P77 电位pH图的局限性 三、电化学腐蚀动力学 P81-83 极化作用 P84 过电位的定义 P85-86 电极反应步骤和速度控制步骤(电化学极
8、化、浓差极化)P88 化学反应速率方程 P93 电化学反应速率方程 P94-95 交换电流密度 P96 电化学反应动力方程 P97 外测电流密度 P97-98 极化曲线和极化率 材料腐蚀与防护 P99-101 Tafel方程式 P103 极限扩散电流密度 P104-105 扩散过程动力学方程 P109-113 混合电位理论 P114-118 腐蚀电流密度icorr P119-121 腐蚀电流密度的影响因素 P125 极化电流密度 四、析氢腐蚀与吸氧腐蚀 P132 析氢腐蚀的原理 P137-140 影响析氢腐蚀的因素 P141 减缓析氢腐蚀的途径 P142 吸氧腐蚀的原理 P147-149 影响
9、吸氧腐蚀的因素 P150 析氢腐蚀与吸氧腐蚀的比较 第三章 金属常见腐蚀形态及机理 重点 1.按材料腐蚀形态分类 全面腐蚀:均匀腐蚀、不均匀腐蚀 局部腐蚀:点蚀、缝隙腐蚀及丝状腐蚀、电偶腐蚀、晶间腐蚀、选择性腐蚀 2.电偶腐蚀 定义:异种金属接触,在一定条件下(电解质溶液或大气中),电位较负的腐蚀加速,电位较正的金属腐蚀减慢的现象称为电偶腐蚀,(亦称之为双金属腐蚀或接触腐蚀)。机理:两种金属构成宏电池,产生电偶电流,使电位较负的金属(阳极)产生阳极极化,溶解速度增加;电位较正的金属(阴极)产生阴极极化,溶解速度减小。阴阳极面积比增大,介质电导率减小,都使阳极腐蚀加重。影响因素:电化学因素、介质
10、条件、表面面积 3.点蚀 定义:点蚀又称孔蚀,是一种腐蚀集中在金属表面的很小范围内,并深入到金属内部的小孔状腐蚀形态,蚀孔直径小、深度深,其余地方不腐蚀或腐蚀很轻微。机理:第一阶段蚀孔成核(钝化膜破坏理论和吸附理论);第二阶段蚀孔生长(基于闭塞电池的活化-钝化腐蚀电池的自催化理论)影响因素:介质类型、介质浓度、介质温度、溶液pH、介质流速 4.缝隙腐蚀 定义:有电解质溶液存在,金属表面因存在异物或结构上的原因而形成缝隙,从而导致狭缝内的金属腐蚀加速的现象。机理:初期阶段缝内缺氧、缝外富氧,氧浓差电池;后期阶段闭塞电池自催化效应 影响因素:几何因素、环境因素、材料因素 5.晶间腐蚀 定义:金属材
11、料在特定的腐蚀介质中沿着材料的晶粒边界或晶界附近发生腐蚀,使晶粒之间丧失结合力的一种局部破坏的腐蚀现象。产生原因:多晶体的金属和合金本身的晶粒和晶界的结构和化学成分存在差异产生了形成材料腐蚀与防护 腐蚀微电池的物质条件;在晶界和晶粒构成的腐蚀原电池中,晶界为阳极,晶粒为阴极。由于晶界的面积很小,构成“小阳极大阴极”机理:(1)贫化理论晶界碳化物析出(2)阳极相理论晶界相析出并溶解(3)吸附理论杂质原子在晶界吸附 影响因素:热处理制度;合金成分;腐蚀介质 6.选择性腐蚀 定义:多元合金中较活泼组分的优先溶解,这个过程是由于合金组分的电化学差异而引起的 机理:锌的选择性溶解;溶解-沉积 影响因素:
12、组织结构和成分、温度、腐蚀介质 目录 P2 腐蚀形态的分类 P3 全面腐蚀及其危害 P4 局部腐蚀及其危害 P5 局部腐蚀的原因 P6 全面腐蚀与局部腐蚀的对比 P8 电偶腐蚀的定义 P10-12 电偶序 P13 电偶腐蚀的机理 P14-16 电偶腐蚀的影响因素 P17-18 电偶腐蚀的评价方法和防止措施 P20-22 点蚀的定义、特点和形貌 P23-25 点蚀发生的条件 P26-42 点蚀的机理 P43-46 点蚀的影响因素 P47-50 点蚀的评定方法 P51 点蚀的防止措施 P53-55 缝隙腐蚀的定义、形成以及特征 P56-60 缝隙腐蚀的影响因素 P64 缝隙腐蚀的评价方法 P65-
13、68 丝状腐蚀的定义、特征、机理以及影响因素、防止措施 P69-71 垢下腐蚀的定义、特征、机理以及影响因素 P72 点蚀与缝隙腐蚀的比较 P73 防止缝隙腐蚀的措施 P75 晶间腐蚀的定义和特点 P76 晶间腐蚀产生的原因 材料腐蚀与防护 P77-82 晶间腐蚀的机理 P83-87 晶间腐蚀的影响因素 P88 晶间腐蚀的评定方法 P89 特殊的晶间腐蚀 P90 防止晶间腐蚀的措施 P92-94 选择性腐蚀的定义 P95 选择性腐蚀的机理 P96-97 选择性腐蚀的影响因素 P98 选择性腐蚀的评定方法 第四章 应力作用下的腐蚀 重点 1.应力腐蚀开裂 定义:受一定拉伸应力作用的金属材料在某些
14、特定的介质中,由于腐蚀介质和应力的协同作用而发生的脆性断裂现象 特征:1)典型的滞后破坏 2)裂纹分为晶间型、穿晶型和混合型 3)SCC开裂是一种低应力的脆性断裂 4)裂纹扩展速度比均匀腐蚀快约106倍 2.门槛应力SCC:将无裂纹试样加恒应力,放入腐蚀介质。当外加应力小于某一临界值SCC时,试样在规定的时间内不发生应力腐蚀断裂。将SCC称为门槛应力。SCC是衡量应力腐蚀开裂敏感性的定量参量之一,SCC越小,应力腐蚀越敏感。3.门槛应力场强度因子KISCC:当KI降低到某一定值后,材料就不会由于应力腐蚀而发生断裂(即材料有无限寿命),此时的KI就叫做应力腐蚀临界应力场强度因子,以KISCC表示
15、 4.腐蚀疲劳 定义:腐蚀疲劳(CF)是指材料或构件在交变应力与腐蚀环境的共同作用下产生的脆性断裂。破坏比单纯疲劳破坏或单纯腐蚀破坏严重。特征:1)空气中存在疲劳极限,而腐蚀疲劳不存在疲劳极限 2)腐蚀疲劳(CF)与应力腐蚀断裂(SCC)比较 3)疲劳腐蚀强度与耐蚀性有关 4)CF裂纹多源于表面蚀坑或缺陷,往往成群出现 5)CF断口 5.第一类氢脆:不可逆氢脆,加载前内部已有氢脆源,应力加快裂纹的形成与扩展 材料腐蚀与防护 第二类氢脆:根据应变速率与氢脆敏感性的关系分类,加载前内部不存在裂纹源,H 与应力交互作用形成裂纹源。6.磨损腐蚀:金属表面与腐蚀介质之间的相对运动,引起金属的加速破坏。7
16、.冲刷腐蚀:金属表面与腐蚀流体之间由于高速相对运动引起的金属损伤。是流体冲刷与腐蚀协同作用的结果。8.空泡腐蚀:高速流体和腐蚀共同作用下,引起的气蚀过程 9.摩擦副磨损腐蚀:摩擦副接触表面的机械磨损与周围环境介质化学或电化学腐蚀的共同作用,导致表层材料流失的现象。10.微动腐蚀:是指在有氧气或其它腐蚀介质存在的条件下,沿着受压载荷而紧密接触的界面上有轻微的振动或微小振幅的往返相对运动,导致在接触面上出现小坑、细槽或裂纹的现象。也称微震腐蚀。目录 P4-5 应力腐蚀开裂的定义和产生条件 P13 应力腐蚀开裂的特征 P14-17 应力腐蚀开裂的机理 P18 应力腐蚀开裂的影响因素 P19-25 应
17、力腐蚀开裂的研究方法(门槛应力SCC、门槛应力场强度因子KISCC)P26 应力腐蚀开裂的防止措施 P28 腐蚀疲劳的定义 P29-31 腐蚀疲劳的特征 P32-34 腐蚀疲劳的机理 P35-38 腐蚀疲劳的影响因素 P39-40 腐蚀疲劳的评定方法 P41 腐蚀疲劳的防止措施 P43-44 氢的来源和存在形式 P45 氢的扩散和富集 P47-49 第一类氢脆 P51-52 第二类氢脆 P53-57 氢致开裂的机理 P58 降低氢致开裂的途径 P59 应力腐蚀和氢脆的关系 P61 磨损腐蚀的定义和影响因素 P62 冲刷腐蚀的定义和影响因素 P63 空泡腐蚀的定义和过程 P64 摩擦副磨损腐蚀的
18、定义和机理 P65-66 微动腐蚀的定义、形态和理论 P67-68 磨损腐蚀的研究方法和防止措施 材料腐蚀与防护 第五章 自然环境中的腐蚀 重点 1.大气腐蚀:由于金属材料与空气中的水和氧发生化学和电化学作用而引起的腐蚀称为大气腐蚀。2.土壤腐蚀:埋在土壤中的金属及构件的腐蚀。3.水环境中的腐蚀:一般包括淡水腐蚀、盐湖水腐蚀、海水腐蚀。4.太空环境腐蚀:太空环境是诱发航天材料腐蚀和航天器故障的主要原因之一。目录 P3-4 大气腐蚀的定义和分类 P5-7 大气腐蚀的机理 P8 大气腐蚀的影响因素 P9 大气腐蚀的研究方法 P11-12 土壤腐蚀的定义和分类 P13-14 土壤腐蚀的影响因素 P1
19、5 土壤腐蚀的研究方法 P18-20 水环境中的腐蚀机理 P24-25 太空环境中的腐蚀机理、影响因素、研究方法 第六章 典型工业环境中的腐蚀 重点 目录 P29-32 石油开采过程中的腐蚀环节、影响因素及防护 P33-37 石油加工过程中的腐蚀环节、影响因素及防护 P40-41 无机酸腐蚀 P42 有机酸腐蚀 P43 碱腐蚀 P44 盐腐蚀 P46-49 核电工业的腐蚀环境和腐蚀行为 P51-53 航空航天装备的腐蚀 材料腐蚀与防护 第七章 金属的高温腐蚀 重点 1.金属高温腐蚀热力学判据 pO2为氧化物的分解压,pO2为气相中氧的分压 2.金属氧化物的性质 1)氧化物的熔点:氧化物熔点低,
20、不利于稳定;两种氧化物形成共晶时,熔点降低 2)氧化物的挥发性:易挥发,氧化物膜对基体无保护作用蒸气压越小,氧化物越稳定 3)氧化物与金属的体积比(PBR):PBR1,金属氧化膜是完整的,具有保护性;PBR过大,如大于2.5时,内应力过大,易使膜破裂,保护性差;PBR1,金属氧化膜是疏松多孔的,保护性差 4)氧化物间的溶解性:合金氧化时,可形成完全互溶的氧化物固溶体,如Al2O3-Cr2O3,Fe2O3-Cr2O3 5)氧化物间的固相反应:两种氧化物反应生成复合反应物,通常为致密的尖晶石结构,提高抗氧化性 3.金属氧化的动力学规律:金属氧化的动力学曲线大致遵循直线、抛物线、立方、对数及反对数五
21、种规律 4.高温合金氧化的机理 1)合金的选择氧化 2)合金的内氧化和外氧化 3)掺杂对合金氧化的作用 4)活性元素效应 5.高温合金氧化的影响因素 1)温度的循环:促进氧化物剥落 2)微量元素:镍基、钴基高温合金中,S、P、B、C有害;Fe既无害也无益;Zr、Si、Mg、Mn、Y、Th、RE,有益 3)表面质量:增加表面变形促进内部氧化;铸造合金的表面变形比变形合金的表面变形影响更显著 4)施加应力:高于临界应力时,氧化加快 5)高速气流环境:产生热腐蚀 6.提高高温合金抗氧化的途径 1)改变合金的组织结构,采用特殊工艺制备 2)抗氧化保护涂层 材料腐蚀与防护 目录 P2 高温腐蚀的定义 P
22、4-5 金属高温腐蚀热力学判据 P7-8 其他类型高温腐蚀热力学:高温硫化 P11-12 金属氧化物的基本结构 P13 金属氧化物的基本性质 P14-15 金属氧化物的缺陷 P17-18 金属高温氧化的过程 P19-23 金属氧化的动力学规律 P24-25 金属氧化的机理 P27 高温合金氧化的特征 P28-44 高温合金氧化的机理 P45 高温合金氧化的影响因素 P46 提高高温合金抗氧化的途径 P47-51 其他类型环境金属高温腐蚀 材料腐蚀与防护 第八章 金属腐蚀的防护与控制方法 重点 1.正确选材与合理结构设计 2.缓蚀剂保护:向腐蚀介质中添加某些少量的化学药品,能显著地阻止或减缓金属
23、的腐蚀速度。这些少量的添加物质即所谓缓蚀剂 3.缓蚀剂分类 按照电化学理论分类 阳极型缓蚀剂在钝化区起作用;阴极型缓蚀剂主要对金属的活性溶解起缓蚀作用;混合型缓蚀剂 按照形成的保护膜分类 氧化(膜)型缓蚀剂 沉淀(膜)型缓蚀剂 吸附型缓蚀剂 4.电化学保护:电化学保护是指通过施加外电动势将被保护金属的电位移向免蚀区或钝化区,以减小或防止金属腐蚀的方法。这是一项经济而有效的防护措施。5.阴极保护:金属电解质溶解腐蚀体系受到阴极极化时,电位负移,金属阳极氧化反应过电位a减小,反应速度减小,这种金属腐蚀速度减小的现象,称为阴极保护效应。1)外加电流阴极保护:所需保护电流是由直流电源(如蓄电池、直流发
24、电机、整流器等)提供的;2)牺牲阳极保护:所需保护电流是由牺牲阳极的溶解所提供的 6.阳极保护:对具有活态钝态转变而不能自钝化的腐蚀体系,通过外加阳极极化电流,使金属的电位正移到稳定钝化区内,金属的腐蚀速度就会大幅度降低,这种防护方法称为阳极保护。1)金属的致钝:整体致钝法;逐步致钝法;低温致钝法;化学致钝法;涂料致钝法;脉冲致钝法 2)金属的维钝:固定槽压法;恒电位法 7.金属镀层:阳极镀层、阴极镀层 阳极镀层:在使用环境中,覆层材料的电位比基体金属的电位负,比如铁表面上用锌作覆层。在覆层缺陷处形成的腐蚀电池中,覆层是阳极,能够对基体金属起到阴极保护作用。阳极性覆层常用作防护性覆层 阴极镀层
25、:在使用环境中,覆层材料的电位比基体金属的电位正,如铁表面上覆盖铬、镍。如果覆盖存在缺陷,将加速基体金属的腐蚀。因此阴极性覆层必须足够完整、无孔隙,才能起机械隔离作用。8.非金属涂层:四种化学转化膜(铬酸盐膜、磷化膜、钢铁的化学氧化膜、铝及铝合金的阳极氧化膜)材料腐蚀与防护 目录 P5-6 正确选材与合理结构设计 P8 缓蚀剂保护定义和特点 P9-17 缓蚀剂的分类 P18-19 缓蚀剂的选用原则 P21 电化学保护的定义 P22-25 阴极保护的原理和保护参数 P26-27 阴极保护的两种方法 P30 两种阴极保护的比较 P31-32 阳极保护的原理和保护参数 P33 阳极保护的方法(致钝、
26、维钝)P34-36 阴极保护和阳极保护的对比 P40-41 金属镀层(阳极性镀层、阴极镀层)P42-49 金属镀层技术 P51-55 非金属镀层的化学转化膜 材料腐蚀与防护 第九章 典型无机非金属材料的腐蚀及防护 重点 1.玻璃腐蚀的机理:溶解、水解、选择性腐蚀、应力腐蚀 2.玻璃腐蚀的影响因素:化学组成、材料孔隙与结构、腐蚀介质、热处理、表面状态、温度与压力 3.玻璃腐蚀的防护 开发铝磷酸基的耐氢氟酸腐蚀的玻璃 开发耐碱的Na2O-ZrO2-SiO2基的玻璃 表面涂层处理:用含Zr、Ti、Hf、La等盐类的改性处理纤维,用醋酸铍处理后形成表面沉积层。4.混凝土腐蚀的机理:溶出型腐蚀、分解型侵
27、蚀、膨胀型腐蚀、碱-骨料反应腐蚀(碱集性反应)、微生物腐蚀、钢筋锈蚀 5.混凝土腐蚀的影响因素:混凝土的化学成分、混凝土的孔隙率或密实度、环境因素 6.混凝土腐蚀的防护 混凝土材料的优选 混凝土表面涂层保护 添加钢筋阻锈剂 阴极保护法 目录 P2 硅酸盐材料的腐蚀 P6-9 玻璃腐蚀的机理 P10-12 玻璃腐蚀的影响因素 P13 玻璃腐蚀的防护 P15-16 混凝土腐蚀的特点和危害 P17-23 混凝土腐蚀的机理 P24 混凝土腐蚀的影响因素 P25-26 混凝土腐蚀的防护 材料腐蚀与防护 第十章 高分子材料的腐蚀及防护 重点 1.高分子材料的腐蚀:高分子材料由于环境因素的物理作用、化学作用
28、或生物作用,导致其物理化学性能和机械性能逐渐退化,以至最终丧失其使用功能的现象称为高分子材料的腐蚀,俗称老化。2.高分子材料老化的评价方法:自然环境老化试验、实验室模拟加速老化试验 3.高分子材料腐蚀的防护 加入抗老化剂。如在塑料和橡胶生成过程中加入稳定剂、抗老化剂 改进聚合和后处理工艺。改进成型加工和后处理工艺。改性,共聚、共混、添加增强剂或改性剂等 物理防护,涂镀层等 目录 P3-4 高分子材料的腐蚀的定义、途径和破坏形式 P5-15 高分子材料的腐蚀机理 P16-17 高分子材料老化的评价方法 P18 高分子材料腐蚀的防护 第十一章 功能材料的腐蚀与防护 重点 信息材料的腐蚀与防护 1.
29、电子器件的环境腐蚀特点(电子器件的腐蚀主要为大气腐蚀)温度:低温脆断、高温失效、温差引起应力 湿度:吸附的水汽加速腐蚀 氧气:金属的腐蚀主要是吸氧腐蚀 盐雾:海水进入空气中形成的盐雾,与实验室的盐雾试验不同 2.镁合金的表面涂层技术:化学转化涂层:铬酸盐涂层等,有机涂层的前处理 阳极氧化膜层:形成致密的MgO涂层 金属镀层:形成的镀层必须致密,否则发生电偶腐蚀 扩散涂层:形成冶金结合 有机涂层:树脂、油漆等,耐蚀和美观 生物医用材料的腐蚀 3.生物环境:具有很强的腐蚀性 生理环境:模拟体液 生物生理环境:生理条件+血清蛋白 生物环境:生物生理环境+细胞 细胞周围环境 材料腐蚀与防护 纳米材料腐蚀与防护