《统计学(第五版)贾俊平版期末考试模拟试题一.pdf》由会员分享,可在线阅读,更多相关《统计学(第五版)贾俊平版期末考试模拟试题一.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、模拟试题一 一。单项选择题(每小题 2 分,共 20 分)9 名大学生每月的手机话费支出(单位:元)分别是:64。3,60。4,77.6,51.2,53.1,57。5,53.9,47。8,53。5。手机话费支出的平均数是()A。53.9 B。57。7 C。55.2 D.56.5 一项调查表明,在所抽取的 2000 个消费者中,他们每月在网上购物的平均花费是 200 元,这项调查的总体是()A。2000 个消费者 B.2000 个消费者的平均花费金额 C。所有在网上购物的消费者 D.所有在网上购物的消费者的总花费额 在参数估计中,要求用来估计总体参数的统计量与总体参数的离差越小越好。这种评价标准
2、称为()A无偏性 B有效性 C一致性 D充分性 下面关于回归模型的假定中不正确的是()A。误差项 是一个期望值为 0 的随机变量 B.对于所有的 x 值,的方差 都相同 C。误差项是一个服从正态分布的随机变量,且独立 D.自变量 x 是随机的 某药品生产企业采用一种新的配方生产某种药品,并声称新配方药的疗效远好于旧的配方。为检验企业的朔方是否属实,医药管理部门抽取一个样本进行检验,提出的假设为。该检验所犯的第类错误是指()A新药的疗效有显著提高,得出新药疗效没有显著提高的结论 B新药的疗效有显著提高,得出新药的疗效有显著提高的结论 C新药的疗效没有显著提高的结论,得出新药疗效没有显著提高的结论
3、 D新药的疗效没有显著提高,得出新药疗效有显著提高的结论 一家研究机构从事水稻品种的研发.最近研究出 3 个新的水稻品。为检验不同品种的平均产量是否相同,对每个品种分别在 5 个地块上进行试验,共获得 15 个产量数据。在该项研究中,反映全部 15 个产量数据之间称为()A。总误差 B.组内误差 C.组间误差 D.处理误差 趋势变动的特点是()A。呈现出固定长度的周期性变动 B。呈现出波浪形或振荡式变动 C。在一年内重复出现的周期性波动 D。呈现出某种持续向上或持续下降的变动 一般而言,选择主成分的标准通常是要求所选主成分的累积方差总和占全部方差的()A。60以上 B。70以上 C.80以上
4、D。90以上 如果要检验样本数据是否来自某一正态分布的总体,可采用的非参数检验方法是()A。符号检验 B.Wilcoxon 符号秩检验 C。二项分布检验 D。KS 检验 在聚类分析中,根据样本对多个变量进行分类称为()A。型聚类 B。型聚类 C。层次聚类 D.K-均值聚类 二.简要回答下列问题(每小题 10 分,共 20 分)直方图和条形图各自的应用场合是什么?二者有何区别?从一批食品抽取 20 袋作为样本。(1)估计时该批食品的平均重量的置信区间时采用的分布是什么?请说明理由。(2)估计该批食品重量的方差时采用的分布是什么?(3)上述两种估计的假定条件是什么?三。计算与分析下列各题(每小题
5、15 分,共 60 分)某公司招收推销员,要测定男女推销员的推销能力是否有差别,名随机抽选了 8 人,经过一段时间销售,取得销售额数据(单位:万元)如下:(1)计算男推销员销售额的四分位数。(2)计算男推销员销售额的平均数和标准差。(3)已知女推销员销售额的平均数是 33。75 万元,标准差是 14。44 万元。比较男女推销员销售额数据的差异程度。某企业生产的袋装食品采用自动打包机包装,每袋标准重量为 100 克.现从某天生产的一批产品中按重复抽样随机抽取 50 包进行检查,测得每包重量(克)如下:假定食品包重服从正态分布,要求:(1)确定该种食品平均重量 95%的置信区间。(2)如果规定食品
6、重量低于 100 克属于不合格,确定该批食品合格率 95%的置信区间。(3)采用假设检验方法检验该批食品的重量是否符合标准要求?(,写出检验的具体步骤).一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行使时间(小时)行驶的里程(公里)之间的关系,为此随机调查了 20 个出租车司机,根据每天的收入()、行使时间()和行驶的里程()的有关数据进行回归,得到下面的有关结果():(1)写出每天的收入()与行使时间()和行驶的里程()的线性回归方程.(2)解释各回归系数的实际意义。(3)计算多重判定系数,并说明它的实际意义。(4)计算估计标准误差,并说明它的实际意义。(5
7、)若显著性水平 a0.05,回归方程的线性关系是否显著?(注:)某房地产开发公司为制定合理的开发计划,需要了解商品房销售情况.为此,公司收集了最近三年各季度的房屋销售量数据(单位:万平方米),结果如下:(1)根据上表数据绘制房屋销售量的时间序列图,根据图形分析,房屋销售量含有什么成分?该成分的变化特点是什么?(2)要预测房屋销售量,应该选择哪些方法?(3)根据上面的数据计算的各季节指数如下:指出房屋销售的旺季和淡季。(4)如果 2008 年 4 季度的销售量不受季节影响的话,销售量应该是多少?模拟试题一解答 一、单项选择题(每小题 2 分,共 20 分)1。B;2.C;3。B;4。B;5。D;
8、6.A;7.D;8。C;9.D;10.A。二、简要回答下列问题(每小题 10 分,共 20 分)1.直方图主要用于展示数据型数据的分布;条形图则主要用于展示不同类别中数据的多少,尤其适合于展示分类数据。二者的主要区别是:条形图中的每一矩形表示一个类别,矩形的高度(或长度)表示数据的多少,其宽度没有意义,是任意确定的;而直方图各矩形的高度表示各组的频数混频率,宽度表示各组的组距,其高度和宽度都有实际意义.其次,由于数值型数据的分组具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。2.(1)估计时该批食品的平均重量的置信区间,应采用采用正 分布进行估计。因为 属于小样本,由于总体方差
9、未知,样本均值经标准化会服从自由度为 的 分布。(2)估计该批食品重量的方差时采用的 分布,因为样本方差的抽样分布服从自由度为 的分布.(3)上述两种估计都假定该批食品的重量服从正态分布。三、(每小题 15 分,共 60 分)1。(1);将销售额排序后得:;(2)(3)男推销员的离散系数为:。女推销员的离散系数为:.男推销员的离散系数大于女推销员,说明男推销员销售额的离散程度大于女推销员。2.(1)已知:,。样本均值为:克,样本标准差为:克。由于是大样本,所以食品平均重量 95的置信区间为:即(100.867,101。773)。(2)提出假设:,计算检验的统计量:由于,所以拒绝原假设,该批食品
10、的重量不符合标准要求。3。(1)回归方程为:。(2)表示:在行驶里程不变的情况下,行驶时间每增加 1 小时,每天的收入平均增加 9。16 元;表示:在行驶时间不变的情况下,行驶里程每增加 1 公里,每天的收入平均增加0。46 元。(3)。表明在每天收入的总变差中,被估计的多元线性回归方程所解释的比例为 85.17,说明回归方程的拟合程度较高。(4)。表明用行驶时间和行驶里程来预测每天的收入时,平均的预测误差为 17。50 元.(5)提出假设:,:至少有一个不等于 0。计算检验的统计量 F:于,拒绝原假设。这意味着每天收入与行驶时间和行驶里程之间的线性关系是显著的。4.(1)时间序列图如下:从图形看,含有季节成分.其特点是观测值在一年内重复出现周期性波动.(2)可供选择的预测方法有:季节多元回归模型、季节自回归模型、分解预测。(3)销售旺季是 3 季度,淡季是 4 季度。(4)提出季节影响的结果是:680。7679=88.55 万平方米。