《风险资产的定价.pdf》由会员分享,可在线阅读,更多相关《风险资产的定价.pdf(54页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 风险资产的定价 Written by Peter at 2021 in January 风险资产的定价 风险资产的定价是投资学的核心内容之一。本章将在上一章的基础上详细讨论风险资产的定价方法,特别是资本资产定价模型。第一节 有效集和最优投资组合 根据上一章介绍过的马科维茨证券组合理论,投资者必须根据自己的风险-收益偏好和各种证券和证券组合的风险、收益特性来选择最优的投资组合。然而,现实生活中证券种类繁多,这些证券更可组成无数种证券组合,如果投资者必须对所有这些组合进行评估的话,那将是难以想象的。幸运的是,根据马科维茨的有效集定理,投资者无须对所有组合进行一一评估。本节将按马科维茨的方法,由浅
2、入深地介绍确定最优投资组合的方法。一、可行集 为了说明有效集定理,我们有必要引入可行集(Feasible Set)的概念。可行集指的是由 N 种证券所形成的所有组合的集合,它包括了现实生活中所有可能的组合。也就是说,所有可能的组合将位于可行集的边界上或内部。一般来说,可行集的形状象伞形,如图 8-1 中由 A、N、B、H 所围的区域所示。在现实生活中,由于各种证券的特性千差万别。因此可行集的位置也许比图8-1 中的更左或更左,更高或更低,更胖或更瘦,但它们的基本形状大多如此。PR B H 可行集 N A 图 8-1 可行集与有效集 二、有效集(一)有效集的定义 对于一个理性投资者而言,他们都是
3、厌恶风险而偏好收益的。对于同样的风险水平,他们将会选择能提供最大预期收益率的组合;对于同样的预期收益率,他们将会选择风险最小的组合。能同时满足这两个条件的投资组合的集合就是有效集(Efficient Set,又称有效边界 Efficient Frontier)。处于有效边界上的组合称为有效组合(Efficient Portfolio)。(二)有效集的位置 可见,有效集是可行集的一个子集,它包含于可行集中。那么如何确定有效集的位置呢 我们先考虑第一个条件。在图 8-1 中,没有哪一个组合的风险小于组合 N,这是因为如果过 N 点画一条垂直线,则可行集都在这条线的右边。N 点所代表的组合称为最小方
4、差组合(Minimum Variance Portfolio)。同样,没有哪个组合的风险大于 H。由此可以看出,对于各种风险水平而言,能提供最大预期收益率的组合集是可行集中介于 N 和 H 之间的上方边界上的组合集。我们再考虑第二个条件,在图 8-1 中,各种组合的预期收益率都介于组合 A 和组合 B 之间。由此可见,对于各种预期收益率水平而言,能提供最小风险水平的组合集是可行集中介于 A、B 之间的左边边界上的组合集,我们把这个集合称为最小方差边界(Minimum Variance Frontier)。由于有效集必须同时满足上述两个条件,因此 N、B 两点之间上方边界上的可行集就是有效集。所
5、有其他可行组合都是无效的组合,投资者可以忽略它们。这样,投资者的评估范围就大大缩小了。(三)有效集的形状 从图 8-1 可以看出,有效集曲线具有如下特点:有效集是一条向右上方倾斜的曲线,它反映了“高收益、高风险“的原则;有效集是一条向上凸的曲线,这一特性可从图 8-2 推导得来;有效集曲线上不可能有凹陷的地方,这一特性也可以图 8-2 推导出来。三、最优投资组合的选择 确定了有效集的形状之后,投资者就可根据自己的无差异曲线群选择能使自己投资效用最大化的最优投资组合了。这个组合位于无差异曲线与有效集的相切点O,所图 8-2 所示。I3 I2 I1 B O H N A 图 8-2 最优投资组合 从
6、图 8-2 可以看出,虽然投资者更偏好 I3上的组合,然而可行集中找不到这样的组合,因而是不可实现的。至于 I1上的组合,虽然可以找得到,但由于 I1的位置位于 I2的东南方,即 I1所代表的效用低于 I2,因此 I1上的组合都不是最优组合。而 I2代表了可以实现的最高投资效用,因此 O 点所代表的组合就是最优投资组合。有效集向上凸的特性和无差异曲线向下凸的特性决定了有效集和无差异曲线的相切点只有一个,也就是说最优投资组合是唯一的。对于投资者而言,有效集是客观存在的,它是由证券市场决定的。而无差异曲线则是主观的,它是由自己的风险收益偏好决定的。从上一章的分析可知,厌恶风险程度越高的投资者,其无
7、差异曲线的斜率越陡,因此其最优投资组合越接近 N 点。厌恶风险程度越低的投资者,其无差异曲线的斜率越小,因此其最优投资组合越接近 B 点。第二节 无风险借贷对有效集的影响 在前一节中,我们假定所有证券及证券组合都是有风险的,而没有考虑到无风险资产的情况。我们也没有考虑到投资者按无风险利率借入资金投资于风险资产的情况。而在现实生活中,这两种情况都是存在的。为此,我们要分析在允许投资者进行无风险借贷的情况下,有效集将有何变化。一、无风险贷款对有效集的影响(一)无风险贷款或无风险资产的定义 无风险贷款相当于投资于无风险资产,其收益率是确定的。在单一投资期的情况下,这意味着如果投资者在期初购买了一种无
8、风险资产,那他将准确地知道这笔资产在期末的准确价值。由于无风险资产的期末价值没有任何不确定性,因此,其标准差应为零。同样,无风险资产收益率与风险资产收益率之间的协方差也等于零。在现实生活中,什么样的资产称为无风险资产呢首先,无风险资产应没有任何违约可能。由于所有的公司证券从原则上讲都存在着违约的可能性,因此公司证券均不是无风险资产。其次,无风险资产应没有市场风险。虽然政府债券基本上没有违约风险,但对于特定的投资者而言,并不是任何政府债券都是无风险资产。例如,对于一个投资期限为 1 年的投资者来说,期限还有 10 年的国债就存在着风险。因为他不能确切地知道这种证券在一年后将值多少钱。事实上,任何
9、一种到期日超过投资期限的证券都不是无风险资产。同样,任何一种到期日早于投资期限的证券也不是无风险资产,因为在这种证券到期时,投资者面临着再投资的问题,而投资者现在并不知道将来再投资时能获得多少再投资收益率。综合以上两点可以看出,严格地说,只有到期日与投资期相等的国债才是无风险资产。但在现实中,为方便起见,人们常将 1 年期的国库券或者货币市场基金当作无风险资产。(二)允许无风险贷款下的投资组合 1投资于一种无风险资产和一种风险资产的情形 为了考察无风险贷款对有效集的影响,我们首先要分析由一种无风险资产和一种风险资产组成的投资组合的预期收益率和风险。假设风险资产和无风险资产在投资组合中的比例分别
10、为 X1和 X2,它们的预期收益率分别为1R和 rf,它们的标准差分别等于1和2,它们之间的协方差为12。根据 X1和 X2的定义,我们有 X1+X2=1,且 X1、X20。根据无风险资产的定义,我们有2和12都等于 0。这样,根据式(),我们可以算出该组合的预期收益率)(pR为:nifiiprXRXRXR1211 ()根据式(),我们可以算出该组合的标准差(p)为:1111XXXninjijjip ()由上式可得:11pX ,121PX ()将()代入()得:pffprRrR11 ()由于1R、rf和1已知,式()是线性函数,其中11frR 为单位风险报酬(Reward-to-Variabi
11、lity),又称夏普比率(Sharpes Ratio)。由于 X1、X20,因此式()所表示的只是一个线段,如图 8-3 所示。在图 8-3 中,A 点表示无风险资产,B 点表示风险资产,由这两种资产构成的投资组合的预期收益率和风险一定落在 A、B 这个线段上,因此 AB 连线可以称为资产配置线。由于 A、B 线段上的组合均是可行的,因此允许风险贷款将大大扩大大可行集的范围。B A 图 8-3 无风险资产和风险资产的组合 2投资于一种无风险资产和一个证券组合的情形 如果投资者投资于由一种无风险资产和一个风险资产组合组成的投资组合,情况又如何呢假设风险资产组合 B 是由风险证券 C 和 D 组成
12、的。根据第 8 章的分析可得,B 一定位于经过 C、D 两点的向上凸出的弧线上,如图 8-4 所示。如果我们仍用1R和1代表风险资产组合的预期收益率和标准差,用 X1代表该组合在整个投资组合中所占的比重,则式()到()的结论同样适用于由无风险资产和风险资产组合构成的投资组合的情形。在图 8-4 中,这种投资组合的预期收益率和标准差一定落在 A、B 线段上。D B A C 图 8-4 无风险资产和风险资产组合的组合(三)无风险贷款对有效集的影响 引入无风险贷款后,有效集将发生重大变化。在图 8-5 中,弧线 CD 代表马科维茨有效集,A 点表示无风险资产。我们可以在马科维茨有效集中找到一点 T,
13、使AT 直线与弧线 CD 相切于 T 点。T 点所代表的组合称为切点处投资组合。T D C A 图 8-5 允许无风险贷款时的有效集 T 点代表马科维茨有效集中众多的有效组合中的一个,但它却是一个很特殊的组合。因为没有任何一种风险资产或风险资产组合与无风险资产构成的投资组合可以位于 AT 线段的左上方。换句话说,AT 线段的斜率最大,因此 T 点代表的组合被称为最优风险组合(Optimal Risky Portfolio)。从图 8-5 可以明显看出,引入 AT 线段后,CT 弧线将不再是有效集。因为对于T 点左边的有效集而言,在预期收益率相等的情况下,AT 线段上风险均小于马科维茨有效集上组
14、合的风险,而在风险相同的情况下,AT 线段上的预期收益率均大于马科维茨有效集上组合的预期收益率。按照有效集的定义,T 点左边的有效集将不再是有效集。由于 AT 线段上的组合是可行的,因此引入无风险贷款后,新的有效集由 AT 线段和 TD 弧线构成。我们举个例子来说明如何确定最优风险组合和有效边界。假设市场上有 A、B两种证券,其预期收益率分别为 8%和 13%,标准差分别为 12%和 20%。A、B 两种证券的相关系数为。市场无风险利率为 5%。某投资者决定用这两只证券组成最优风险组合。从图 8-5 可以看出,最优风险组合实际上是使无风险资产(A 点)与风险资产组合的连线斜率(即11frR)最
15、大的风险资产组合,其中11和R分别代表风险资产组合的预期收益率和标准差,rf表示无风险利率。我们的目标是求11f,XXrRMaxBA。其中:R1=XARA+XBRB 约束条件是:XA+XB=1。这是标准的求极值问题。通过将目标函数对 XA求偏导并另偏导等于 0,我们就可以求出最优风险组合的权重解如下:BAfBfAAfBBfABAfBBfAArRrRrRrRrRrRX222 ()XB=1-XA 将数据代进去,就可得到最优风险组合的权重为:2.012.03.005.013.005.008.012.005.013.02.005.008.02.012.03.005.013.02.005.008.022
16、2AX =XB=该最优组合的预期收益率和标准差分别为:该最优风险组合的单位风险报酬=(11%-5%)/%=有效边界的表达式为:本书所附的光盘中的 Excel 模板(标题为第 8 章 两证券模型)则用另一种办法根据两个风险资产的预期收益率、标准差和相关系数以及无风险利率的数据找出有效边界。(四)无风险贷款对投资组合选择的影响 对于不同的投资者而言,无风险贷款的引入对他们的投资组合选择有不同的影响。对于厌恶风险程度较轻,从而其选择的投资组合位于 DT 弧线上的投资者而言,其投资组合的选择将不受影响。因为只有 DT 弧线上的组合才能获得最大的满足程度。如图 8-6(a)所示。对于该投资者而言,他仍将
17、把所有资金投资于风险资产,而不会把部分资金投资于无风险资产。I3 I2 I1 D O T C A (a)I3 I2 I1 D T O C (b)图 8-6 无风险贷款下的投资组合选择 对于较厌恶风险的投资者而言,由于代表其原来最大满足程度的无差异曲线 I1与 AT 线段相交,因此不再符合效用最大化的条件。因此该投资者将选择其无差异曲线与 AT 线段相切O所代表的投资组合,如图 8-6(b)所示。对于该投资者而言,他将把部分资金投资于风险资产,而把另一部分资金投资于无风险资产。我们再举个例子说明投资者如何根据自己的投资效用函数来进行最优的资产配置。继续前面的例子。投资者面临的最优风险组合的预期收
18、益率(1R)和标准差(1)分别为 11%和%。市场无风险利率(rf)为 5%。某投资者的投资效用函数(U)为:其中 A 表示风险厌恶系数,2PPR和分别表示整个投资组合(包括无风险资产和最优风险组合)的预期收益率和标准差,它们分别等于:其中 y 表示投资者分配给最优风险组合的投资比例。投资者的目标是通过选择最优的资产配置比例 y 来使他的投资效用最大化。将2PPR和代入投资效用函数中,我们可以把这个问题写成如下的数学表达式:将上式对 y 求偏导并令其等于 0,我们就可以得到最优的资产配置比例 y*:211*ArRyf ()如果该投资者的风险厌恶系数 A=4,则其 y*=(11%-5%)/(4%
19、2)=。也就是说,该投资者应将%的资金投入最优风险组合,%投入无风险资产。这样他的整个投资组合的预期收益率为%(=5%+11%),标准差为%(=%)。显然,这种资产配置的效果是不错的。二、无风险借款对有效集的影响(一)允许无风险借款下的投资组合 在推导马科维茨有效集的过程中,我们假定投资者可以购买风险资产的金额仅限于他期初的财富。然而,在现实生活中,投资者可以借入资金并用于购买风险资产。由于借款必须支付利息,而利率是已知的。在该借款本息偿还上不存在不确定性。因此我们把这种借款称为无风险借款。为了分析方便起见,我们假定投资者可按相同的利率进行无风险借贷。1无风险借款并投资于一种风险资产的情形 为
20、了考察无风险借款对有效集的影响,我们首先分析投资者进行无风险借款并投资于一种风险资产的情形。为此,我们只要对上一节的推导过程进行适当的扩展即可。我们可以把无风险借款看成负的投资,则投资组合中风险资产和无风险借款的比例也可用 X1和 X2表示,且 X1+X2=1,X11,X21,X20,因此式()在图上表现为 AB 线段向右边的延长线上,如图 8-7 所示。这个延长线再次大大扩展了可行集的范围。B A 图 8-7 无风险借款和风险资产的组合 2无风险借款并投资于风险资产组合的情形 同样,由无风险借款和风险资产组合构成的投资组合,其预期收益率和风险的关系与由无风险借款和一种风险资产构成的投资组合相
21、似。我们仍假设风险资产组合 B 是由风险证券和 C 和 D 组成的,则由风险资产组合B 和无风险借款 A 构成的投资组合的预期收益率和标准差一定落在 AB 线段向右边的延长线上,如图 8-8 所示。D B A C 图 8-8 无风险借款和风险组合的组合(二)无风险借款对有效集的影响 引入无风险借款后,有效集也将发生重大变化。在图 8-9 中,弧线 CD 仍代表马科维茨有效集,T 点仍表示 CD 弧线与过 A 点直线的相切点。在允许无风险借款的情形下,投资者可以通过无风险借款并投资于最优风险资产组合 T 使有效集由TD 弧线变成 AT 线段向右边的延长线。D T A C 图 8-9 允许无风险借
22、款时的有效集 这样,在允许无风险借贷的情况下,马科维茨有效集由 CTD 弧线变成过 A、T 点的直线在 A 点右边的部分。(三)无风险借款对投资组合选择的影响 对于不同的投资者而言允许无风险借款对他们的投资组合选择的影响也不同。对于厌恶风险程度较轻,从而其选择的投资组合位于 DT 弧线上的投资者而言,由于代表其原来最大满足程度的无差异曲线 I1与 AT 直线相交,因此不再符合效用最大化的条件。因此该投资者将选择其无差异曲线与 AT 直线切点所代表的投资组合。如图 8-10(a)所示。对于该投资者而言,他将进行无风险借款并投资于风险资产。继续前面的例子。如果投资者的风险厌恶系数 A 等于 2,则
23、他的最优资产配置比例 y*=(11%-5%)/(2%2)=。也就是说,该投资者应借入%的无风险资金,加上自有资金全部投资于最优风险组合。这样他的整个投资组合的预期收益率为%(=5%+11%),标准差为%(=%)。PR I3 PR I3 I2 I1 I2 D O I1 T D O O O T A A C C(a)(b)图 8-10 无风险借款下的投资组合选择 对于较厌恶风险从而其选择的投资组合位于 CT 弧线上的投资者而言,其投资组合的选择将不受影响。因为只有 CT 弧线上的组合才能获得最大的满足程度,如图 8-10(b)所示。对于该投资者而言,他只会用自有资产投资于风险资产,而不会进行无风险借
24、款。综上所述,在允许无风险借贷的情况下,有效集变成一条直线,该直线经过无风险资产 A 点并与马科维茨有效集相切。第三节 资本资产定价模型 在第 8 章和本章第一、二节中,我们给出确定最优投资组合的方法,投资者首先必须估计所有证券的预期收益率和方差、所有这些证券之间的协方差以及无风险利率水平,然后,找出切点处投资组合(最优风险组合),并根据自己无差异曲线与无风险利率和切点处投资组合构成的直线的切点来决定自己的最优投资组合。这种方法属于规范经济学的范畴。在本节中,我们将在假定所有投资者均按上述方法投资的情况下,研究风险资产的定价问题,它属于实证经济学范畴。在这里,我们要着重介绍资本定价模型(Cap
25、ital Asset Pricing Model,CAPM)。该模型是由夏普(William Sharpe)林特纳(John Lintner)、特里诺(Jack Treynor)和莫森(Jan Mossin)等人在现代证券组合理论的基础上提出的1,在投资学中占有很重要的地位,并在投资决策和公司理财中得到广泛的运用。一、基本的假定 为了推导资本资产定价模型,假定:1所有投资者的投资期限均相同。2投资者根据投资组合在单一投资期内的预期收益率和标准差来评价这些投资组合。3投资者永不满足,当面临其他条件相同的两种选择时,他们将选择具有较高预期收益率的那一种。4投资者是厌恶风险的,当面临其他条件相同的两
26、种选择时,他们将选择具有较小标准差的那一种。5每种资产都是无限可分的。6投资者可按相同的无风险利率借入或贷出资金。7税收和交易费用均忽略不计。1 Sharpe,W.,1964,“Capital Asset Prices,”Journal of Finance,September,425-42.Lintner,J.,1965,“The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolio and Capital Budgets,”Review of Economics and Stat
27、istics,February,13-37.Mossin,J.1966,“Equilibrium in a Capital Market,”Econometrica,October,768-83.8对于所有投资者来说,信息都是免费的并且是立即可得的。9投资者对于各种资产的收益率、标准差、协方差等具有相同的预期。这些假定虽然与现实世界存在很大差距,但通过这个假想的世界,我们可以导出证券市场均衡关系的基本性质,并以此为基础,探讨现实世界中风险和收益之间的关系。二、资本市场线(一)分离定理 在上述假定的基础上,我们可以得出如下结论:1根据相同预期的假定,我们可以推导出每个投资者的切点处投资组合(最优
28、风险组合)都是相同的(如图 8-10 的 T 点),从而每个投资者的线性有效集都是一样的。2由于投资者风险收益偏好不同,其无差异曲线的斜率不同,因此他们的最优投资组合也不同。由此我们可以导出着名的分离定理:投资者对风险和收益的偏好状况与该投资者风险资产组合的最优构成是无关的。分离定理可从图 8-11 中看出,在图 8-11,I1代表厌恶风险程度较轻的投资者的无差异曲线,该投资者的最优投资组合位于 O1 点,表明他将借入资金投资于风险资产组合上,I2代表较厌恶风险的投资者的无差异曲线,该投资者的最优投资组合位于 O2点,表明他将部分资金投资于无风险资产,将另一部分资金投资于风险资产组合。虽然 O
29、1和 O2位置不同,但它们都是由无风险资产(A)和相同的最优风险组合(T)组成,因此他们的风险资产组合中各种风险资产的构成比例自然是相同的。PR I2 I1 O1 D O2 T A C 图 8-11 分离定理(二)市场组合 根据分离定理,我们还可以得到另一个重要结论:在均衡状态下,每种证券在均点处投资组合中都有一个非零的比例。这是因为,根据分离定理,每个投资者都持有相同的最优风险组合(T)。如果某种证券在 T 组合中的比例为零,那么就没有人购买该证券,该证券的价格就会下降,从而使该证券预期收益率上升,一直到在最终的最优风险组合 T 中,该证券的比例非零为止。同样,如果投资者对某种证券的需要量超
30、过其供给量,则该证券的价格将上升,导致其预期收益率下降,从而降低其吸引力,它在最优风险组合中的比例也将下降直至对其需求量等于其供给量为止。因此,在均衡状态下,每一个投资者对每一种证券都愿意持有一定的数量,市场上各种证券的价格都处于使该证券的供求相等的水平上,无风险利率的水平也正好使得借入资金的总量等于贷出资金的总量。这样,在均衡时,最优风险组合中各证券的构成比例等于市场组合(Market Portfolio)中各证券的构成比例。所谓市场组合是指由所有证券构成的组合,在这个组合中,每一种证券的构成比例等于该证券的相对市值。一种证券的相对市值等于该证券总市值除以所有证券的市值的总和。习惯上,人们将
31、切点处组合叫做市场组合,并用 M 代替 T 来表示。从理论上说,M 不仅由普通股构成,还包括优先股、债券、房地产等其它资产。但在现实中,人们常将 M 局限于普通股。(三)共同基金定理 如果投资者的投资范围仅限于资本市场,而且市场是有效的,那么市场组合就大致等于最优风险组合。于是单个投资者就不必费那么多劲进行复杂的分析和计算,只要持有指数基金和无风险资产就可以了。(当然,如果所有投资者都怎么做,那么这个结论就不成立。因为指数基金本身并不进行证券分析,它只是简单地根据各种股票的市值在市场总市值中的比重来分配其投资。因此,如果每个投资者都不进行证券分析,证券市场就会失去建立风险收益均衡关系的基础。)
32、如果我们把货币市场基金看做无风险资产,那么投资者所要做的事情只是根据自己的风险厌恶系数 A,将资金合理地分配于货币市场基金和指数基金,这就是共同基金定理2。共同基金定理将证券选择问题分解成两个不同的问题:一个是技术问题,即由专业的基金经理人创立指数基金;而是个人问题,即根据投资者个人的风险厌恶系数将资金在指数基金与货币市场基金之间进行合理配置。(四)有效集 按资本资产定价模型的假设,我们就可以很容易地找出有效组合风险和收益之间的关系。如果我们用 M 代表市场组合,用 Rf代表无风险利率,从 Rf出发画一条经过 M 的直线,这条线就是在允许无风险借贷情况下的线性有效集,在此我们称 2 推而广之,
33、如果现实世界中的风险源有 n 个,且有专门针对这些风险源的 n 个共同基金,那么投资者只要根据自己对各种风险的厌恶系数 Ai(i=1,2,n)将资金合理地分配于共同基金和货币市场基金(n+1 个基金),就可以实现最优风险配置。为资本市场线(Capital Market Line),如图 8-12 所示。任何不利用市场组合以及不进行无风险借贷的其它所有组合都将位于资本市场线的下方。M 图 8-12 资本市场线 从图 8-12 可以看出,资本市场线的斜率等于市场组合预期收益率与无风险证券收益率之差)(fMRR 除以它们的风险之差)(oM,即MfMRR/)(,由于资本市场线与纵轴的截距为 Rf,因此
34、其表达式为:pMfMfpRRRR ()其中,pR和P分别代表最优投资组合3的预期收益率和标准差。从式()可以看出,证券市场的均衡可用两个关键数字来表示:一是无风险利率,)(fR,二是单位风险报酬)/(MfMRR,它们分别代表时间报酬和风险报酬。因此,从本质上说,证券市场提供了时间和风险进行交易的场所,其价格则由供求双方的力量来决定。三、证券市场线 资本市场线反映的是有效组合的预期收益率和标准差之间的关系,任何单个风险证券由于均不是有效组合而一定位于该直线的下方。因此资本市场线并不能告诉我们单个证券的预期收益与标准差(即总风险)之间应存在怎样的关系。为此,我们有必要作进一步的分析。根据式()我们
35、可以得出市场组合标准差的计算公式为:2/111ninjijjMiMMXX ()3 即由无风险资产和最优风险组合(市场组合)组成的任何组合。其中iMX和jMX分别表示证券 i 和 j 在市场组合中的比例。式()可以展开为:2/11113322111njnjnjnjjMNMjjMMjjMMnjjjMMMXXXXXXXX()根据协方差的性质可知,证券 i 跟市场组合的协方差)(iM等于证券 i 跟市场组合中每种证券协方差的加权平均数:njijjMiMX1 ()如果我们把协方差的这个性质运用到市场组合中的每一个风险证券,并代入式(),可得:2/1332211nMnMMMMMMMMXXXX ()其中,M
36、1表示证券 1 与市场组合的协方差,M2表示证券 2 与市场组合的协方差,依此类推。式()表明,市场组合的标准差等于所有证券与市场组合协方差的加权平均数的平方根,其权数等于各种证券在市场组合中的比例。由此可见,在考虑市场组合风险时,重要的不是各种证券自身的整体风险,而是其与市场组合的协方差。这就是说,自身风险较高的证券,并不意味着其预期收益率也应较高;同样,自身风险较低的证券,也并不意味着其预期收益率也就较低。单个证券的预期收益率水平应取决于其与市场组合的协方差。由此我们可以得出如下结论:具有较大iM值的证券必须按比例提供较大的预期收益率以吸引投资者。由于市场组合的预期收益率和标准差分别是各种
37、证券预期收益和各种证券与市场组合的协方差(iM)的加权平均数,其权数均等于各种证券在市场组合中的比例,因此如果某种证券的预期收益率相对于其iM值太低的话,投资者只要把这种证券从其投资组合中剔除就可提高其投资组合的预期收益率,从而导致证券市场失衡。同样,如果某种证券的预期收益率相对于其iM值太高的话,投资者只要增持这种证券就可提高其投资组合的预期收益率,从而也将导致证券市场失衡。在均衡状态下,单个证券风险和收益的关系可以写为:iMMfMfiRRRR)(2 ()式()所表达的就是着名的证券市场线(Security Market Line)4,它反映了单个证券与市场组合的协方差和其预期收益率之间的均
38、衡关系,如果我们用iR作纵坐标,用iM作横坐标,则证券市场线在图上就是一条截距为 Rf、斜率为/)(2MfMRR的直线,如图 8-13(a)所示。从式()可以有趣地发现,对于iM等于 0 的风险证券而言,其预期收益率应等于无风险利率,因为这个风险证券跟无风险证券一样,对市场组合的风险没有任何影响。更有趣的是,当某种证券的iM0 时,该证券的预期收益率甚至将低于Rf。把式()代入式(),我们有:iMfMfiRRRR)(()其中,iM称为证券 i 的系数,它是表示证券 i 与市场组合协方差的另一种方式。式()是证券市场线的另一种表达方式。如果我们用iR为纵轴,用iM为横轴,则证券市场线也可表示为截
39、距为fR,斜率为)(fMRR的直线,如图 8-13(b)所示。M M Rf Rf 4证券市场线的详细推导过程请详见 Sharpe,William F.,Gordon J.Alexander and Jeffery V.Bailey,Investments,5th edition,Prentice-Hall International,Inc.,1995。2M iM im (a)(b)图 8-13 证券市场线 系数的一个重要特征是,一个证券组合的值等于该组合中各种证券值的加权平均数,权数为各种证券在该组合中所占的比例,即:niiMipMX1 ()其中pM表示组合 P 的值。由于任何组合的预期收益
40、率和值都等于该组合中各个证券预期收益率和值的加权平均数,其权数也都等于各个证券在该组合中所占比例,因此,既然每一种证券都落在证券市场线上,那么由这些证券构成的证券组合也一定落在证券市场线上。比较资本市场线和证券市场线可以看出,只有最优投资组合才落在资本市场线上,其他组合和证券则落在资本市场线下方。而对于证券市场线来说,无论是有效组合还是非有效组合,它们都落在证券市场线上。既然证券市场线包括了所有证券和所有组合,因此也一定包含市场组合和无风险资产。在市场组合那一点,值为 1,预期收益率为MR,因此其坐标为(1,MR)。在无风险资产那一点,值为 0,预期收益率为 Rf,因此其坐标为(0,Rf)。证
41、券市场线反映了在不同的值水平下,各种证券及证券组合应有的预期收益率水平,从而反映了各种证券和证券组合系统性风险与预期收益率的均衡关系。由于预期收益率与证券价格与反比,因此证券市场线实际上也给出了风险资产的定价公式。资本资产定价模型所揭示的投资收益与风险的函数关系,是通过投资者对持有证券数量的调整并引起证券价格的变化而达到的。根据每一证券的收益和风险特征,给定一证券组合,如果投资者愿意持有的某一证券的数量不等于已拥有的数量,投资者就会通过买进或卖出证券进行调整,并因此对这种证券价格产生涨或跌的压力。在得到一组新的价格后,投资者将重新估计对各种证券的需求,这一过程将持续到投资者对每一种证券愿意持有
42、的数量等于已持有的数量,证券市场达到均衡。四、值的估算(一)单因素模型 系数的估计是 CAPM 模型实际运用时最为重要的环节之一。在实际运用中,人们常用单因素模型来估计值。单因素模型5一般可以表示为:Rit=i+iRmt+it ()在这里,Rit为证券 i 在 t 时刻的实际收益率,Rmt为市场指数在 t 时刻的收益率,i为截距项,i为证券 i 收益率变化对市场指数收益率变化的敏感度指标,它衡量的是系统性风险,it为随机误差项,该随机误差项的期望值为零。公式()也常被称为市场模型。虽然从严格意义上讲,资本资产定价模型中的值和单因素模型中的值是有区别的,前者相对于整个市场组合而言,而后者相于某个
43、市场指数而言,但是在实际操作中,由于我们不能确切知道市场组合的构成,所以一般用市场指数来代替,因此我们可以用单因素模型测算的值来代替资本资产定价模型中的值。另外,CAPM 模型中的值是预期值,而我们无法知道投资者的预测值是多少,我 5也有一些人用超额收益率而不用总收益率。所谓超额收益率就是总收益率超过无风险利率的部分。们只能根据历史数据估计过去一段样本期内的值,并把它当作预测值使用。这里的差距是显而易见的,读者应注意。单因素模型可以用图 8-14 中的特征线表示,特征线是从对应于市场指数收益率的证券收益率的散点图拟合而成的,根据单因素模型的公式,值可以看作特征线的斜率,它表示市场指数收益率变动
44、 1%时,证券收益率的变动幅度。图 8-14 值和特征线 我们可以运用对历史数据的回归分析估计出单因素模型中的参数,从而得出值。例如,可以计算出过去 9 年内的月收益率,这样市场指数和某一证券的收益率就分别有 108 个观察值,然后对这些观察值进行回归分析。值的观察值越多,值的估算就越准确。本书所附光盘中有如何利用个股和指数的月收益率数据估计值的 EXCEL 表单(文件名为第 8 章 估计贝塔系数)。我们把估计结果列于表 8-1。表 8-1 根据市场模型估计的 7 只股票和等权重组合的值 股票代码 R2 标准误 样本数 600601 0017 0612 0013 0083 108 600602
45、 108 600603 108 600604 0930 108 600651 108 600652 1004 108 600653 1104 108 等权重组合 0977 108 表中的 R2被称为决定系数,它表示因变量(股票收益率)的方差能被自变量(上证综合指数收益率)变动解释的比例,用公式表示为:R2=(2M2)/2 标准误主要用来判定所估计的系数是否显着不为 0。基本的判断原则是当估计的系数小于标准误的两倍时,我们就不能推翻其真实值为 0 的假设。从表中的数据来看,估计值都不显着异于 0,而估计值都显着异于 0。(二)多因素模型 市场收益率的变动只是系统性风险的最终表现,而系统性风险本身
46、的原因可能是多方面的(如 GDP 增长率、利率水平、通货膨胀率等),同时各种证券对这些原因的敏感度是不同的。因此,有些学者提出了各种各样的多因素模型,如:Rit=i+IPiIPt+EIiEIt+UIiUIt+CGiCGt+GBiGBt+it 其中 IP 表示工业生产增长率,ER 表示预期通货膨胀率,UI 表示未预期到的通货膨胀率,CG 表示长期公司债超过长期国债的收益率,GB 表示长期国债超过短期国库券的收益率,IP、EI、UI、CG和GB分别表示证券 i 的收益率对工业生产增长率、预期通货膨胀率、未预期到的通货膨胀率、长期公司债超过长期国债的收益率和长期国债超过短期国库券的收益率的敏感度6。
47、另外,有些学者认为,投资者在投资时,关心的不仅仅是市场收益率变动的风险,还关心其他风险源,如证券投资收益率与其工资收入之间的关系,因此也提出了各种各样的多因素模型,其中最为着名的是 Fama 和 French 的三因素模型7:Rit=i+MiRMt+SMBiSMBt+HMLiHMLt+it 6 Chen,N.,R.Roll,and S.Ross,1986,“Economic Forces and the stock Market,”Journal of Business 59,PP.383-403.7Fama,Eugene F.and Kenneth R.French,1996,“Multif
48、actor Explanations of Asset Pricing Anomalies,”Journal of Finance 51,pp.55-84.其中,SMB 表示小股票组合收益率减大股票组合收益率,HML 表示帐面净值与市值比率高的股票组合收益率减帐面净值与市值比率低的股票组合收益率。SMB和HML分别表示证券 i 的收益率对 SMB 和 HML 的敏感度。第四节 资本资产定价模型的进一步讨论 资本资产定价模型是建立在严格的假设前提下的。这些严格的假设条件在现实的世界中很难满足。那么,该理论有多大的应用价值呢我们可以从两方面来回答这个问题。一是放宽不符合实际的假设前提后,看该理论本
49、身或者经过适当修改后能否基本上成立;二是通过实证检验看这一理论是否能较好地解释证券市场价格运动规律。一、不一致性预期 如果投资者对未来收益的分布不具有相同的预期,那么他们将持有不同的有效集和选择不同的市场组合。林特耐(Lintner)1967 年的研究表明,不一致性预期的存在并不会给资本资产定价模型造成致命影响,只是资本资产定价模型中的预期收益率和协方差需使用投资者预期的一个复杂的加权平均数。尽管如此,如果投资者存在不一致性预期,市场组合就不一定是有效组合,其结果是资本资产定价模型不可检验8。二、多要素资本资产定价模型 传统的资本资产定价模型假设投资者只关心的唯一风险是证券未来价格变化的不确定
50、性,然而投资者通常还会关心其他的一些风险,这些风险将影响投资者未来的消费能力,比如与未来的收入水平变化、未来商品和劳务价格的变化和未来投资机会的变化等相关的风险都是投资者可能关心的风险。8 Lintner,J.,1969,“The Aggregation of Investors Diverse Judgements and Preferences in Purely Competitive Security Markets,”Journal of Financial and Quantitative Analysis.为此,罗伯特.默顿发展了包含“市场外”风险(要素)的资本资产定价模型,称为