《《高考试卷》2023年江西高考数学(理科)试题答案.doc》由会员分享,可在线阅读,更多相关《《高考试卷》2023年江西高考数学(理科)试题答案.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 参考答案:123456789101112CBABDABDCABA13.6 14. 15.16 16.17.(12分)解:(1)在中,由正弦定理得.由题设知,所以.由题设知,所以.(2)由题设及(1)知,.在中,由余弦定理得.所以.18.(12分)解:(1)由已知可得,BFPF,BFEF,所以BF平面PEF.又平面ABFD,所以平面PEF平面ABFD.(2)作PHEF,垂足为H.由(1)得,PH平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系Hxyz.由(1)可得,DEPE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PEPF.可得.则为平
2、面ABFD的法向量.设DP与平面ABFD所成角为,则.所以DP与平面ABFD所成角的正弦值为.19.(12分)解:(1)由已知得,l的方程为x=1.由已知可得,点A的坐标为或.所以AM的方程为或.(2)当l与x轴重合时,.当l与x轴垂直时,OM为AB的垂直平分线,所以.当l与x轴不重合也不垂直时,设l的方程为,则,直线MA,MB的斜率之和为.由得.将代入得.所以,.则.从而,故MA,MB的倾斜角互补,所以.综上,.20.(12分)解:(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依
3、题意知,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.21.(12分)解:(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.22选修4-4:坐标系与参数方程(10分)【解析】(1)由,得的直角坐标方程为(2)由(1)知是圆心为,半径为的圆由题设知,是过点且关于轴对称的两条射线记轴右边的射线为,轴左边的射线为由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点学#科网当与只有一个公共点时,到所在直线的距离为,所以,故或经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点当与只有一个公共点时,到所在直线的距离为,所以,故或经检验,当时,与没有公共点;当时,与没有公共点综上,所求的方程为23选修4-5:不等式选讲(10分)【解析】(1)当时,即故不等式的解集为(2)当时成立等价于当时成立若,则当时;若,的解集为,所以,故综上,的取值范围为