《《高考试卷》2023年高考新课标Ⅲ卷理数试题.doc》由会员分享,可在线阅读,更多相关《《高考试卷》2023年高考新课标Ⅲ卷理数试题.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 高考帮帮你实现大学梦想!绝密启封并使用完毕前 试题类型:新课标注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至3页,第卷3至5页。2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。3.全部答案在答题卡上完成,答在本试题上无效。 4. 考试结束后,将本试题和答题卡一并交回。第卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。来源:学.科.网(1)设集合S= ,则ST=(A) 2,3 (B)(- ,2 3,+)(C) 3,+) (D)(0,2 3,+)【答案】D考点:1、不等式的解法;2、集合的交集运算(2)若
2、,则 (A)1 (B) -1 (C) i (D)-i【答案】C【解析】试题分析:,故选C考点:1、复数的运算;2、共轭复数(3)已知向量 , 则ABC=(A)300 (B) 450 (C) 600 (D)1200【答案】A【解析】试题分析:由题意,得,所以,故选A考点:向量夹角公式(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同
3、 (D) 平均气温高于200C的月份有5个【答案】D考点:1、平均数;2、统计图(5)若 ,则 (A) (B) (C) 1 (D) 【答案】A【解析】试题分析:由,得或,所以,故选A考点:1、同角三角函数间的基本关系;2、倍角公式(6)已知,则(A) (B) (C) (D)【答案】A【解析】试题分析:因为,所以,故选A考点:幂函数的图象与性质(7)执行下图的程序框图,如果输入的,那么输出的(A)3 (B)4 (C)5 (D)6【答案】B考点:程序框图(8)在中,BC边上的高等于,则 (A) (B) (C) (D)【答案】C【解析】试题分析:设边上的高线为,则,所以,由余弦定理,知,故选C来源:
4、学*科*网Z*X*X*K考点:余弦定理 (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A) (B) (C)90 (D)81【答案】B考点:空间几何体的三视图及表面积(10) 在封闭的直三棱柱内有一个体积为V的球,若,则V的最大值是(A)4 (B) (C)6 (D) 【答案】B【解析】试题分析:要使球的体积最大,必须球的半径最大由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B考点:1、三棱柱的内切球;2、球的体积(11)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且轴.过点A
5、的直线l与线段交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)(B)(C)(D)【答案】A考点:椭圆方程与几何性质(12)定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个 (B)16个 (C)14个 (D)12个【答案】C【解析】试题分析:由题意,得必有,则具体的排法列表如下:0000来源:学,科,网Z,X,X,K1来源:Zxxk.Com111来源:学科网101110110100111011010011010001110110100110考点:计数原理的应用第II
6、卷本卷包括必考题和选考题两部分。第(13)题第(21)题为必考题,每个试题考生都必须作答。第(22)题第(24)题未选考题,考生根据要求作答。二、填空题:本大题共3小题,每小题5分(13)若满足约束条件 则的最大值为_.【答案】考点:简单的线性规划问题(14)函数的图像可由函数的图像至少向右平移_个单位长度得到【答案】【解析】试题分析:因为,所以函数的图像可由函数的图像至少向右平移个单位长度得到考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数(15)已知为偶函数,当时,则曲线在点处的切线方程是_。【答案】考点:1、函数的奇偶性与解析式;2、导数的几何意义(16)已知直线:与圆交于两点
7、,过分别做的垂线与轴交于两点,若,则_.【答案】4【解析】试题分析:因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,考点:直线与圆的位置关系三、解答题:解答应写出文字说明,证明过程或演算步骤(17)(本小题满分12分)已知数列的前n项和,其中(I)证明是等比数列,并求其通项公式;(II)若 ,求【答案】();()【解析】考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模
8、型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。参考数据:,2.646.参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:【答案】()理由见解析;()1.82亿吨()由及()得,.所以,关于的回归方程为:.将2016年对应的代入回归方程得:.所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.考点:线性相关与线性回归方程的求法与应用(19)(本小题满分12分)如图,四棱锥中,地面,为线段上一点,为的中点(I)证明平面;学科&网(II)求直线与平面所成角的正弦值.【答案】()见解析;
9、()设为平面的法向量,则,即,可取,于是.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积(20)(本小题满分12分)已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.【答案】()见解析;() 考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法(21)(本小题满分12分)设函数,其中,记的最大值为()求;()求;()证明【答案】();();()见解析【解析】试题分析:()直接可求;()分两种情况,结合三角函数的有界性求出,但须注意当时还须进一步分为两种情况求解;(
10、)首先由()得到,然后分,三种情况证明试题解析:()()当时,因此, 4分当时,将变形为令,则是在上的最大值,且当时,取得极小值,极小值为令,解得(舍去),考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性请考生在22、23、24题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。22.(本小题满分10分)选修4-1:几何证明选讲如图,O中的中点为,弦分别交于两点(I)若,求的大小;(II)若的垂直平分线与的垂直平分线交于点,证明【答案】();()见解析考点:1、圆周角定理;2、三角形内角和定理;3、垂直平分线定理;4、四点共圆23
11、.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .(I)写出的普通方程和的直角坐标方程;(II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.【答案】()的普通方程为,的直角坐标方程为;()考点:1、椭圆的参数方程;2、直线的极坐标方程24.(本小题满分10分)选修4-5:不等式选讲已知函数(I)当a=2时,求不等式的解集;(II)设函数当时,求的取值范围.【答案】();()【解析】试题分析:()利用等价不等式,进而通过解不等式可求得;()根据条件可首先将问题转化求解的最小值,此最值可利用三角形不等式求得,再根据恒成立的意义建立简单的关于的不等式求解即可试题解析:()当时,.解不等式,得.因此,的解集为. 5分()当时,当时等号成立,考点:1、绝对值不等式的解法;2、三角形绝对值不等式的应用 18 / 18