性、最小二乘估计、回归分析与 独立性检验.ppt

上传人:qwe****56 文档编号:80586974 上传时间:2023-03-23 格式:PPT 页数:62 大小:2.48MB
返回 下载 相关 举报
性、最小二乘估计、回归分析与 独立性检验.ppt_第1页
第1页 / 共62页
性、最小二乘估计、回归分析与 独立性检验.ppt_第2页
第2页 / 共62页
点击查看更多>>
资源描述

《性、最小二乘估计、回归分析与 独立性检验.ppt》由会员分享,可在线阅读,更多相关《性、最小二乘估计、回归分析与 独立性检验.ppt(62页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第三节第三节 相关性、最小二乘估计、回归分析与相关性、最小二乘估计、回归分析与 独立性检验独立性检验三年三年9 9考考 高考指数高考指数:1.1.会作两个有关联变量的数据的散点图,并利用散点图认识变会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系量间的相关关系.2.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不记公式)式建立线性回归方程(不记公式).3.3.了解独立性检验的基本思想、方法及其初步应用了解独立性检验的基本思想、方法及其初步应用.4.4.了解回归分析的基本思想、方法及其简单应用了解

2、回归分析的基本思想、方法及其简单应用.1.1.线性回归方程的建立及应用和独立性检验的应用是考查重点;线性回归方程的建立及应用和独立性检验的应用是考查重点;2.2.题型以选择题和填空题为主,主要是求线性回归方程的系数题型以选择题和填空题为主,主要是求线性回归方程的系数或利用线性回归方程进行预测,在给出临界值的情况下判断两或利用线性回归方程进行预测,在给出临界值的情况下判断两个变量是否有关个变量是否有关.1.1.相关性相关性(1)(1)散点图:在考虑两个量的关系时,为了对散点图:在考虑两个量的关系时,为了对_之间的关系之间的关系有一个大致的了解,人们通常将有一个大致的了解,人们通常将_的点描出来,

3、的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图的散点图.(2)(2)曲线拟合:从散点图上可以看出,如果变量之间曲线拟合:从散点图上可以看出,如果变量之间_,这些点会有一个,这些点会有一个_的大致趋势,这种趋势通常可的大致趋势,这种趋势通常可以用一条以用一条_来近似,这种近似的过程称为曲线拟合来近似,这种近似的过程称为曲线拟合.变量所对应变量所对应存在着某存在着某种关系种关系光滑的曲线光滑的曲线变量变量集中集中(3)(3)线性相关:若在两个变量线性相关:若在两个变量x x和和y y的散点图中,所有点看上去的散点图中

4、,所有点看上去都在都在_附近波动,则称变量间是线性相关的附近波动,则称变量间是线性相关的.此时,此时,我们可以用我们可以用_来近似来近似.(4)(4)非线性相关:若散点图上所有点看上去都在非线性相关:若散点图上所有点看上去都在_附近波动,则称此相关为非线性相关附近波动,则称此相关为非线性相关.此时,此时,可以用可以用_来拟合来拟合.(5)(5)不相关:如果所有的点在散点图中不相关:如果所有的点在散点图中_,则,则称变量间是不相关的称变量间是不相关的.一条直线一条直线一条直线一条直线某条曲线某条曲线(不是一条直线不是一条直线)一条曲线一条曲线没有显示任何关系没有显示任何关系【即时应用即时应用】(

5、1)(1)思考:相关关系与函数关系有什么异同点?思考:相关关系与函数关系有什么异同点?提示提示:相同点:两者均是指两个变量的关系相同点:两者均是指两个变量的关系.不同点:不同点:函数关系是一种确定的关系,相关关系是一种非确函数关系是一种确定的关系,相关关系是一种非确定的关系定的关系.函数关系是一种因果关系,而相关关系不一定是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系因果关系,也可能是伴随关系.(2)(2)判断下列各关系是否是相关关系判断下列各关系是否是相关关系.(.(请在括号内填请在括号内填“是是”或或“否否”)路程与时间、速度的关系;路程与时间、速度的关系;()()

6、加速度与力的关系;加速度与力的关系;()()产品成本与产量的关系;产品成本与产量的关系;()()圆周长与圆面积的关系;圆周长与圆面积的关系;()()广告费支出与销售额的关系广告费支出与销售额的关系.().()【解析解析】是确定的函数关系,成本与产量,广告费支出是确定的函数关系,成本与产量,广告费支出与销售额是相关关系与销售额是相关关系.答案:答案:否否 否否 是是 否否 是是2.2.回归直线方程与相关系数回归直线方程与相关系数(1)(1)最小二乘法最小二乘法如果有如果有n n个点个点(x(x1 1,y,y1 1),(x),(x2 2,y,y2 2),),(,(x xn n,y,yn n),可以

7、用下面的表达,可以用下面的表达式来刻画这些点与直线式来刻画这些点与直线y=y=a+bxa+bx的接近程度:的接近程度:_使得上式达到使得上式达到_的直线的直线y=y=a+bxa+bx就是我们所要求的直线,就是我们所要求的直线,这种方法称为最小二乘法这种方法称为最小二乘法.y y1 1-(a+bx-(a+bx1 1)2 2+y y2 2-(a+bx-(a+bx2 2)2 2+y yn n-(a+bx-(a+bxn n)2 2.最小值最小值(2)(2)线性回归方程线性回归方程假设样本点为假设样本点为(x(x1 1,y,y1 1),(x),(x2 2,y,y2 2),),(,(x xn n,y,yn

8、 n),),则则直线方程直线方程y=y=a+bxa+bx称为线性回归方程,称为线性回归方程,a a、b b是线性回归方程的是线性回归方程的_._.系数系数(3)(3)相关系数相关系数r r当当r r0 0时,称两个变量时,称两个变量_._.当当r r0 0时,称两个变量时,称两个变量_._.当当r=0r=0时,称两个变量时,称两个变量_._.r r的绝对值越接近于的绝对值越接近于1 1,表明两个变量之间的线性相关程度越,表明两个变量之间的线性相关程度越高;高;r r的绝对值越接近于的绝对值越接近于0 0,表明两个变量之间的线性相关程度,表明两个变量之间的线性相关程度越低越低.正相关正相关负相关

9、负相关线性不相关线性不相关【即时应用即时应用】(1)(1)由一组样本数据由一组样本数据(x(x1 1,y y1 1),(x(x2 2,y y2 2),(x xn n,y yn n)得到回得到回归直线方程归直线方程y ya abxbx,判断下面说法是否正确,判断下面说法是否正确.(.(请在括号内打请在括号内打“”或或“”)任何一组观测值都能得到具有代表意义的回归直线方程;任何一组观测值都能得到具有代表意义的回归直线方程;()()直线直线y ya abxbx至少经过点至少经过点(x(x1 1,y y1 1),(x(x2 2,y y2 2),(x xn n,y yn n)中的一个点;中的一个点;()

10、()直线直线y ya abxbx的斜率的斜率 ()()直线直线y ya abxbx和各点和各点(x(x1 1,y y1 1),(x(x2 2,y y2 2),(x xn n,y yn n)的偏的偏差差 是该坐标平面上所有直线与这些点的偏差是该坐标平面上所有直线与这些点的偏差中最小的中最小的.().()(2)(2)已知回归方程已知回归方程y y4.4x4.4x838.19838.19,则可估计,则可估计x x与与y y的增长速度的增长速度之比约为之比约为_._.【解析解析】(1)(1)任何一组观测值都能利用公式得到直线方程,但任何一组观测值都能利用公式得到直线方程,但这个方程可能无意义,这个方程

11、可能无意义,不正确;回归直线方程不正确;回归直线方程y ybxbxa a经过经过样本点的中心样本点的中心 可能不经过可能不经过(x(x1 1,y y1 1),(x(x2 2,y y2 2),(x xn n,y yn n)中的任何一点,这些点分布在这条直线附近,中的任何一点,这些点分布在这条直线附近,不正不正确;确;正确;正确;正确正确(2)x(2)x与与y y的增长速度之比即约为回归方程的斜率的倒数的增长速度之比即约为回归方程的斜率的倒数答案:答案:(1)(1)(2)(2)3.3.独立性检验独立性检验(1)2(1)22 2列联表列联表设设A A,B B为两个变量,每一个变量都可以取两个值,变量

12、为两个变量,每一个变量都可以取两个值,变量A A:A A1 1,A A2 2=;变量;变量B B:B B1 1,B B2 2=通过观察得到如表所示的数据:通过观察得到如表所示的数据:B B A AB B1 1B B2 2总计总计A A1 1A A2 2总计总计a ab ba+ba+bc cd dc+dc+da+ca+cb+db+dn=n=a+b+c+da+b+c+d(2)(2)独立性判断方法独立性判断方法选取统计量选取统计量_,用它的大小来检验,用它的大小来检验变量之间是否独立变量之间是否独立.当当2 2_时,没有充分的证据判定变量时,没有充分的证据判定变量A,BA,B有关联,有关联,可以认为

13、变量可以认为变量A A,B B是没有关联的;是没有关联的;当当2 2_时,有时,有90%90%的把握判定变量的把握判定变量A,BA,B有关联有关联;当当2 2_时,有时,有95%95%的把握判定变量的把握判定变量A,BA,B有关联有关联;当当2 2_时,有时,有99%99%的把握判定变量的把握判定变量A,BA,B有关联有关联.2.7062.7062.7062.7063.8413.8416.6356.635【即时应用即时应用】(1)(1)下面是一个下面是一个2 22 2列联表列联表 则表中则表中a a、b b处的值分别为处的值分别为_._.y y1 1y y2 2总计总计x x1 1a a 21

14、217373x x2 22 225252727总计总计b b 4646(2)(2)在一项打鼾与患心脏病的调查中,共调查了在一项打鼾与患心脏病的调查中,共调查了1 6711 671人,经过人,经过计算计算2 2的观测值为的观测值为27.63,27.63,根据这一数据分析,我们有理由认为根据这一数据分析,我们有理由认为打鼾与患心脏病是打鼾与患心脏病是_的的(填填“有关有关”或或“无关无关”).).【解析解析】(1)a+21=73,a=52.(1)a+21=73,a=52.又又a+2=a+2=b,bb,b=54.=54.(2)27.636.635,(2)27.636.635,有有99%99%的把握认

15、为的把握认为“打鼾与患心脏病有关打鼾与患心脏病有关”.答案:答案:(1)52(1)52、54 (2)54 (2)有关有关 相关关系的判断相关关系的判断【方法点睛方法点睛】利用散点图判断相关关系的技巧利用散点图判断相关关系的技巧利用散点图判断两个变量是否有相关关系是比较简便的方法:利用散点图判断两个变量是否有相关关系是比较简便的方法:(1)(1)在散点图中如果所有的样本点都落在某一函数的曲线上,就用在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系;该函数来描述变量之间的关系,即变量之间具有函数关系;(2)(2)如果所有的样本点都落在某一函数

16、的曲线附近,变量之间如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系;就有相关关系;(3)(3)如果所有的样本点都落在某一直线附近,变量之间就有线如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系性相关关系.【例例1 1】关于人体的脂肪含量关于人体的脂肪含量(百分比百分比)和年龄关系的研究中,和年龄关系的研究中,得到如下一组数据:得到如下一组数据:判断它们是否有相关关系判断它们是否有相关关系.年龄年龄 23232727393941414545494950505151脂肪脂肪含量含量 9.59.517.8 17.8 21.2 21.2 25.925.927.527.5 2

17、6.3 26.328.2 28.2 29.6 29.6【解题指南解题指南】判断有无相关关系,一种常用的简便方法就是绘判断有无相关关系,一种常用的简便方法就是绘制散点图制散点图.【规范解答规范解答】本题涉及两个变量:年龄与脂肪含量,可以以年本题涉及两个变量:年龄与脂肪含量,可以以年龄为自变量,考查脂肪含量的变化趋势,分析相关关系通常借龄为自变量,考查脂肪含量的变化趋势,分析相关关系通常借助散点图助散点图.以年龄作为以年龄作为x x轴,脂肪含量作为轴,脂肪含量作为y y轴,可得相应的散点图如图所轴,可得相应的散点图如图所示示.由散点图可知,两者之间具有相关关系由散点图可知,两者之间具有相关关系.【

18、反思反思感悟感悟】粗略判断相关性,可以观察一个变量随另一个粗略判断相关性,可以观察一个变量随另一个变量变化而变化的情况变量变化而变化的情况.画出散点图能够更直观的判断是否相画出散点图能够更直观的判断是否相关,相关时是正相关还是负相关关,相关时是正相关还是负相关.线性回归方程及其应用线性回归方程及其应用【方法点睛方法点睛】求样本数据的线性回归方程的步骤求样本数据的线性回归方程的步骤第一步,计算平均数第一步,计算平均数第二步,求和第二步,求和第三步,计算第三步,计算第四步,写出回归方程第四步,写出回归方程y=y=bx+abx+a.【提醒提醒】对于任意一组样本数据,利用上述公式都可以求得对于任意一组

19、样本数据,利用上述公式都可以求得“回归方程回归方程”,如果这组数据不具有线性相关关系,即不存在回,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的归直线,那么所得的“回归方程回归方程”是没有实际意义的是没有实际意义的.因此,因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程下再求回归方程.【例例2 2】(1)(2011(1)(2011广东高考广东高考)某数学老师身高某数学老师身高176 cm176 cm,他爷爷、,他爷爷、父亲和儿子的身高分别是父亲和儿子的身高分别是173 cm173 cm、170 cm1

20、70 cm和和182 cm.182 cm.因儿子的因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为孙子的身高为_cm._cm.(2)(2)测得某国测得某国1010对父子身高对父子身高(单位:英寸单位:英寸)如下:如下:父亲身父亲身高高(x)(x)606062 62 64 64 65 65 66 66 67 67 68 68 70 70 72 72 74 74 儿子身儿子身高高(y)(y)63.663.6 65.265.2 66 66 65.5 65.5 66.9 66.9 67.1 67.1 67.4 67.4 6

21、8.3 68.3 70.1 70.1 70 70 画出散点图,说明变量画出散点图,说明变量y y与与x x的相关性;的相关性;如果如果y y与与x x之间具有线性相关关系,求线性回归方程之间具有线性相关关系,求线性回归方程.(已知:已知:4 490.34,4 490.34,=44 794,=44 941.93,=44 842.4)=44 794,=44 941.93,=44 842.4)【解题指南解题指南】(1)(1)求出回归方程,代入相关数据求得;求出回归方程,代入相关数据求得;(2)(2)根据散点图判断相关性根据散点图判断相关性.根据已知数据和提示的公式数据求解根据已知数据和提示的公式数据

22、求解,写出线性回归方程写出线性回归方程.【规范解答规范解答】(1)(1)由题设知:设相对的父亲的身高为由题设知:设相对的父亲的身高为x x,相对的,相对的儿子的身高为儿子的身高为y y,它们对应的取值如表所示,它们对应的取值如表所示于是有于是有a=176-173a=176-1731=3,1=3,得回归方程为得回归方程为y=x+3,y=x+3,所以当所以当x=182x=182时,时,y=185.y=185.答案:答案:185185x x173173170170176176y y170170176176182182(2)(2)散点图如图所示散点图如图所示:观察散点图中点的分布可以看出观察散点图中点

23、的分布可以看出:这些点在一条直线的附近分这些点在一条直线的附近分布,所以变量布,所以变量y y与与x x之间具有线性相关关系之间具有线性相关关系.设回归方程为设回归方程为y=y=bx+abx+a.由由 =67.01-0.464 6=67.01-0.464 666.835.974 7.66.835.974 7.得所求的线性回归方程为得所求的线性回归方程为y=0.464 6x+35.974 7.y=0.464 6x+35.974 7.【反思反思感悟感悟】求线性回归方程,主要是利用公式,求出回归求线性回归方程,主要是利用公式,求出回归系数系数b b,a a,求解过程中注意计算的准确性和简便性,求解过

24、程中注意计算的准确性和简便性.利用回归利用回归方程预报,就是求函数值方程预报,就是求函数值.独立性检验的基本思想及其应用独立性检验的基本思想及其应用【方法点睛方法点睛】利用统计量利用统计量2 2进行独立性检验的步骤进行独立性检验的步骤(1)(1)根据数据列出根据数据列出2 22 2列联表;列联表;(2)(2)根据公式计算根据公式计算2 2的值;的值;(3)(3)比较比较2 2与临界值的大小关系,作出统计推断与临界值的大小关系,作出统计推断.【例例3 3】某企业为了更好地了解设备改造前后与生产合格品的某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了关系,随机抽取了180180件产品

25、进行分析,其中设备改造前的合件产品进行分析,其中设备改造前的合格品有格品有3636件,不合格品有件,不合格品有4949件,设备改造后生产的合格品有件,设备改造后生产的合格品有6565件,不合格品有件,不合格品有3030件根据所给数据:件根据所给数据:(1)(1)写出写出2 22 2列联表;列联表;(2)(2)判断产品是否合格与设备改造是否有关判断产品是否合格与设备改造是否有关【解题指南解题指南】列表后利用列表后利用2 2的值进行检验的值进行检验.【规范解答规范解答】(1)(1)由已知数据得由已知数据得 (2)12.38.(2)12.38.由于由于12.386.63512.386.635,所以有

26、,所以有99%99%以上的把握认为产品是否合格与以上的把握认为产品是否合格与设备改造有关设备改造有关合格品合格品不合格品不合格品合计合计设备改造后设备改造后 656530309595设备改造前设备改造前 363649498585合计合计 1011017979180180【反思反思感悟感悟】准确计算准确计算2 2的值是关键的值是关键.能有多大的把握认为能有多大的把握认为两个变量有关,应熟悉常用的几个临界值两个变量有关,应熟悉常用的几个临界值.【满分指导满分指导】线性回归方程解答题的规范解答线性回归方程解答题的规范解答 【典例典例】(12(12分分)(2011)(2011安徽高考安徽高考)某地最近

27、十年粮食需求量逐某地最近十年粮食需求量逐年上升,下表是部分统计数据:年上升,下表是部分统计数据:年份年份 2002 2002 200420042006 2006 200820082010 2010 需求量需求量(万吨万吨)236236246246257257276276286286(1)(1)利用所给数据求年需求量与年份之间的回归直线方程利用所给数据求年需求量与年份之间的回归直线方程y=y=bx+abx+a;(2)(2)利用利用(1)(1)中所求出的直线方程预测该地中所求出的直线方程预测该地20122012年的粮食需求量年的粮食需求量.【解题指南解题指南】将数据进行处理,把数据同时减去一个数代

28、入公将数据进行处理,把数据同时减去一个数代入公式计算;利用公式求回归直线方程,并进行预测式计算;利用公式求回归直线方程,并进行预测.【规范解答规范解答】(1)(1)由所给数据看出,年需求量与年份之间是近由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据预处理如下:似直线上升,下面来求回归直线方程,先将数据预处理如下:2 2分分年份年份-2006-2006 -4-4 -2-20 0 2 2 4 4 需求量需求量-257-257-21-21-11-110 019192929对预处理的数据,容易算得对预处理的数据,容易算得 4 4分分 6 6分分 由上述计算结果,知所求

29、回归直线方程为由上述计算结果,知所求回归直线方程为y-257=b(x-2 006)+a=6.5(x-2 006)+3.2.y-257=b(x-2 006)+a=6.5(x-2 006)+3.2.8 8分分即即y=6.5(x-2 006)+260.2.y=6.5(x-2 006)+260.2.1010分分(2)(2)利用所求得的直线方程,可预测利用所求得的直线方程,可预测20122012年的粮食需求量为年的粮食需求量为6.56.5(2 012-2 006)+260.2=6.5(2 012-2 006)+260.2=6.56+260.2=299.2(6+260.2=299.2(万吨万吨).).12

30、12分分【阅卷人点拨阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以通过高考中的阅卷数据分析与总结,我们可以得到以下失分警示和备考建议:得到以下失分警示和备考建议:失失分分警警示示 在解答本题时有两点容易造成失分:在解答本题时有两点容易造成失分:(1)(1)不知道回归直线必过中心点,求不出回归直线方不知道回归直线必过中心点,求不出回归直线方程;程;(2)(2)应用回归直线进行预测时对回归系数理解错误应用回归直线进行预测时对回归系数理解错误.备备考考建建议议 解决回归分析问题时,还有以下几点容易造成失分,解决回归分析问题时,还有以下几点容易造成失分,在备考时要高度关注:在备考时要高度关注:(

31、1)(1)没有对变量间的相关性判断,求出的回归方程无没有对变量间的相关性判断,求出的回归方程无意义;意义;(2)(2)公式中的系数计算失误;公式中的系数计算失误;另外要注意联系实际,结合生活中的经验解决相关问另外要注意联系实际,结合生活中的经验解决相关问题题.1.(20111.(2011江西高考江西高考)为了解儿子身高与其父亲身高的关系,随为了解儿子身高与其父亲身高的关系,随机抽取机抽取5 5对父子身高数据如下对父子身高数据如下则则y y对对x x的线性回归方程为的线性回归方程为()()(A)yA)yx x1 (B)y1 (B)yx x1 1(C)yC)y8888 x (D)yx (D)y17

32、6176父亲身高父亲身高x(cmx(cm)174174 176176176176176176 178178儿子身高儿子身高y(cmy(cm)175175175175176176177177177177【解析解析】选选C.C.由表中数据知回归直线是上升的,首先排除由表中数据知回归直线是上升的,首先排除D.D.由线性回归性质知:点由线性回归性质知:点 (176,176)(176,176)一定在回归直线上,代入各选项检验,只有一定在回归直线上,代入各选项检验,只有C C符合,故选符合,故选C.C.2.(20112.(2011陕西高考陕西高考)设设(x(x1 1,y,y1 1),(x),(x2 2,y

33、,y2 2),),(,(x xn n,y,yn n)是变量是变量x x和和y y的的n n个样本点,个样本点,直线直线l是由这些样本点通过最小二乘法是由这些样本点通过最小二乘法得到的线性回归直线得到的线性回归直线(如图如图),以下结,以下结论正确的是论正确的是()()(A)(A)直线直线l过点过点(B)xB)x和和y y的相关系数为直线的相关系数为直线l的斜率的斜率(C)xC)x和和y y的相关系数在的相关系数在0 0到到1 1之间之间(D)(D)当当n n为偶数时,分布在为偶数时,分布在l两侧的样本点的个数一定相同两侧的样本点的个数一定相同【解析解析】选选A.A.选项选项 具体分析具体分析

34、结论结论 A A 回归直线回归直线l一定过样本点的中心一定过样本点的中心 ;由回归直由回归直线方程的计算公式线方程的计算公式 可知直线可知直线l必过点必过点 正确正确 B B 相关系数用来衡量两个变量之间的相关程度,直相关系数用来衡量两个变量之间的相关程度,直线的斜率表示直线的倾斜程度;它们的计算公式线的斜率表示直线的倾斜程度;它们的计算公式也不相同也不相同 不正确不正确 选项选项 具体分析具体分析 结论结论 C C 相关系数的值有正有负,还可以是相关系数的值有正有负,还可以是0 0;当相关系;当相关系数在数在0 0到到1 1之间时,两个变量为正相关,在之间时,两个变量为正相关,在-1-1到到

35、0 0之间时,两个变量负相关之间时,两个变量负相关 不正确不正确 D D l两侧的样本点的个数分布与两侧的样本点的个数分布与n n的奇偶性无关,的奇偶性无关,也不一定是平均分布也不一定是平均分布 不正确不正确 3.(20113.(2011辽宁高考辽宁高考)调查了某地若干户家庭的年收入调查了某地若干户家庭的年收入x(x(单位:单位:万元万元)和年饮食支出和年饮食支出y(y(单位:万元单位:万元),调查显示年收入,调查显示年收入x x与年饮与年饮食支出食支出y y具有线性相关关系,并由调查数据得到具有线性相关关系,并由调查数据得到y y对对x x的回归直的回归直线方程:线方程:y=0.254x+0.321.y=0.254x+0.321.由回归直线方程可知,家庭年收入由回归直线方程可知,家庭年收入每增加每增加1 1万元,年饮食支出平均增加万元,年饮食支出平均增加_万元万元.【解析解析】由于由于y=0.254x+0.321,y=0.254x+0.321,当当x x增加增加1 1万元时,年饮食支出万元时,年饮食支出y y增加增加0.2540.254万元万元.答案:答案:0.2540.254

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 财经金融

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁