《新《高考试卷》江苏省南通市2023届高三第一次调研测试数学试卷8.doc》由会员分享,可在线阅读,更多相关《新《高考试卷》江苏省南通市2023届高三第一次调研测试数学试卷8.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 中国权威高考信息资源门户 南通市2014届高三第一次调研测试数学 参考答案与评分标准一、填空题:本大题共14小题,每小题5分,共70分请把答案直接填写在答题卡相应位置上1 已知集合U1,2,3,4,5,A1,2,4,则 【答案】3,52 已知复数,(为虚数单位)在复平面内,对应的点在第 象限【答案】二3 命题:“,”的否定是 【答案】,4 在平面直角坐标系中,抛物线上横坐标为1的点到其焦点的距离为 输入xNY结束(第6题)开始输出y【答案】35 设实数,满足则的最大值是 【答案】76 如图是一个算法的流程图若输入x的值为2,则输出y的值是 【答案】7 抽样统计甲,乙两个城市连续5天的空气质量
2、指数(AQI),数据如下:城市来源:Zxxk.Com来源:学科网来源:Z+xx+k.Com来源:Z.xx.k.Com空气质量指数(AQI)第1天第2天第3天第4天第5天甲109111132118110乙110111115132112则空气质量指数(AQI)较为稳定(方差较小)的城市为 (填甲或乙) 【答案】乙8 已知正三棱锥的侧棱长为1,底面正三角形的边长为现从该正三棱锥的六条棱中随机选取两条棱,则这两条棱互相垂直的概率是 【答案】9 将函数的图象上所有点向右平移个单位后得到的图象关于原点对称,则等于 【答案】10等比数列an的首项为2,公比为3,前n项和为Sn若log3an(S4m+1)=9
3、,则+的最小值是 【答案】11若向量,且,则的值是 【答案】112在平面直角坐标系中,直线是曲线的切线,则当0时,实数的最小值是 【答案】13已知集合M=y,N=,则表示MN的图形面积等于 【答案】14若函数对任意实数,在闭区间上总存在两实数、,使得8成立,则实数的最小值为 【答案】8二、解答题:本大题共6小题,共90分请在答题卡指定区域内作答. 解答时应写出文字说明、证明过程或演算步骤15(本小题满分14分) 如图,在四棱柱中,且A1B1C1CDABD1 (第15题) (1)求证:平面;(2)求证:平面(1)证明:在四棱柱中,平面,平面,所以平面 6分(2)证明:在四棱柱中,四边形为平行四边
4、形,又,故四边形为菱形从而 9分又,而,平面,所以平面 14分16(本小题满分14分) 在ABC中,a,b,c分别为角A,B,C所对的边长,且c=3bcosA,tanC= (1)求tanB的值; (2)若,求ABC的面积(1)解:由正弦定理,得 ,2分即 所以 从而 因为,所以4分 又,由(1)知,解得6分(2)解:由(1),得 , 10分由正弦定理,得12分所以ABC的面积为 14分 17(本小题满分14分)已知a为实常数,y=f(x)是定义在(,0)(0,+)上的奇函数,且当x0时,f(x)=2x+1(1)求函数f(x)的单调区间;(2)若f(x)a1对一切x0成立,求a的取值范围(1)解
5、:由奇函数的对称性可知,我们只要讨论f(x)在区间(,0)的单调性即可f (x)2,令f (x)0,得xa 2分当a0时,f (x)0,故f(x)在区间(,0)是单调递增 4分当a0时,x (,a ),f (x)0,所以f(x)在区间(,a )是单调递增x (a,0),f (x)0,所以f(x)在区间(a,0)是单调减 6分综上所述:当a0时,f(x)单调增区间为(,0),(0,+);当a0时,f(x)单调增区间为(,a ),(a ,+),单调减区间为(a,0),(0,a) 7分(2)解:因为f(x)为奇函数,所以当x0时,f(x)f(x)(2 x1)2x 1 9分当a0时,要使f(x)a1对
6、一切x0成立,即2x a对一切x0成立而当x0时,有a+4aa,所以a0,则与a0矛盾所以a0不成立11分当a0时,f(x)2x11=a1对一切x0成立,故a0满足题设要求12分当a0时,由(1)可知f(x)在(0,a)是减函数,在(a ,+)是增函数所以fmin(x)=f(a)3a1a1,所以a0时也满足题设要求 13分综上所述,a的取值范围是 14分18(本小题满分16分)如图,一块弓形薄铁片EMF,点M为的中点,其所在圆O的半径为4 dm(圆心O在弓形EMF内),EOF=将弓形薄铁片裁剪成尽可能大的矩形铁片ABCD(不计损耗), ADEF,且点A、D在上,设AOD= (1)求矩形铁片AB
7、CD的面积S关于的函数关系式;M (2)当矩形铁片ABCD的面积最大时,求cos的值(第18题)MFOEM(1)解:设矩形铁片的面积为,当时(如图), 3分当时(如图), 故综上得,矩形铁片的面积S关于的函数关系式为 7分(2)解:当时,求导,得令,得 10分记区间内余弦值等于的角为(唯一存在)列表:0增函数极大值减函数又当时,在上的单调减函数, 所以当即时,矩形的面积最大 16分19(本小题满分16分)(第19题)ABCDxPyO如图,在平面直角坐标系中,椭圆过点,离心率为,又椭圆内接四边形ABCD (点A、B、C、D在椭圆上)的对角线AC,BD相交于点,且,(1)求椭圆的方程;(2)求直线
8、AB的斜率(1)解:依题意,解得所求椭圆的方程为 6分(2)解:设,则由,得 8分代入椭圆方程,得整理,得, 10分即 12分设,同理可得 14分 ,得,即直线AB的斜率为 16分20(本小题满分16分)已知等差数列an、等比数列bn满足a1+a2a3,b1b2b3,且a3,a2+ b1,a1+ b2成等差数列,a1,a2,b2成等比数列 (1)求数列an和数列bn的通项公式;(2)按如下方法从数列an和数列bn中取项:第1次从数列an中取a1,第2次从数列bn中取b1,b2,第3次从数列an中取a2,a3,a4,第4次从数列bn中取b3,b4,b5,b6,第2n1次从数列an中继续依次取2n
9、1个项,第2n次从数列bn中继续依次取2n个项,由此构造数列cn:a1,b1,b2,a2,a3,a4,b3,b4,b5,b6,a5,a6,a7,a8,a9,b7,b8,b9,b10,b11,b12,记数列cn的前n和为Sn求满足Sn22014的最大正整数n(1)解:设等差数列an的公差为,等比数列bn的公比为,依题意,得 解得a1=d=1,b1=q=2故an=n,bn=2n 6分(2)解:将a1,b1,b2记为第1组,a2,a3,a4,b3,b4,b5,b6记为第2组,a5,a6,a7,a8,a9,b7,b8,b9,b10,b11,b12记为第3组,以此类推,则第n组中,有2n1项选取于数列a
10、n,有2 n项选取于数列bn,前n组共有n2项选取于数列an,有n2n项选取于数列bn,记它们的总和为Pn,并且有 11分, 当(22222012)时, 13分当(22222013)时, 可得到符合的最大的n=4522012=4037 16分数学(附加题)参考答案与评分标准21【选做题】A 选修41:几何证明选讲 (本小题满分10分) 在ABC中,已知CM是ACB的平分线,AMC的外接圆交BC于点N,且BN2AM 求证:ABAC 证明:如图,在ABC中,因为CM是ACM的平分线,(第21A题)ABCMNO 所以 3分 又因为BA与BC是圆O过同一点B的割线, 所以, 即 6分 又BN=2AM,
11、 所以 8分 由,得ABAC 10分B 选修42:矩阵与变换 (本小题满分10分) 设二阶矩阵,满足,求解:设,因为, 2分所以,即 6分解得所以 10分C选修44:坐标系与参数方程 (本小题满分10分) 在极坐标系中,已知曲线:,过极点O的直线与曲线相交于A、B两点, ,求直线的方程 解:设直线的方程为(R), 2分则 5分又,故 7分解得+2k或+2k,kZ所以直线的方程为或 (R) 10分D选修45:不等式选讲 (本小题满分10分)已知x,y,z均为正数,求证:证明:因为x,y,z均为正数,所以 4分 同理可得, 7分 当且仅当xyz均时,以上三式等号都成立 将上述三个不等式两边左,右两
12、边分别相加,并除以2, 得 10分【必做题】22(本小题满分10分)如图,设,为单位圆上逆时针均匀分布的六个点现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量 (1)求的概率;(2)求的分布列及数学期望(第22题)P1 解:(1)从六个点任选三个不同点构成一个三角形共有种不同选法,其中的为有一个角是的直角三角形(如),共种,所以 3分 (2)的所有可能取值为,的为顶角是的等腰三角形(如),共6种,所以 5分 的为等边三角形(如),共2种,所以 7分 又由(1)知,故的分布列为 所以 10分23(本小题满分10分)已知1,2,满足下列性质T的排列,的个数为(n2,且nN*)性质T:
13、排列,中有且只有一个(1,2,)(1)求;(2)求解:(1)当时,1,2,3的所有排列有,2,3,1,3, ,1,2,其中满足仅存在一个1,2,3,使得的排列有 ,3,1,3,1, 所以 3分 (2)在1,2,的所有排列,中, 若,从个数1,2,3,中选个数按从小到大的顺序 排列为,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为 6分 若,则满足题意的排列个数为 8分 综上, 从而 10分更多试题下载: (在文字上按住ctrl即可查看试题)高考模拟题:高考各科模拟试题【下载】历年高考试题:历年高考各科试题【下载】高中试卷频道:高中各年级各科试卷【下载】高考资源库:各年级试题及学习资料【下载】高考资源库:各年级试题及学习资料【下载】