理论力学03空间力系的简化和平衡.ppt

上传人:wuy****n92 文档编号:80509703 上传时间:2023-03-23 格式:PPT 页数:70 大小:2.01MB
返回 下载 相关 举报
理论力学03空间力系的简化和平衡.ppt_第1页
第1页 / 共70页
理论力学03空间力系的简化和平衡.ppt_第2页
第2页 / 共70页
点击查看更多>>
资源描述

《理论力学03空间力系的简化和平衡.ppt》由会员分享,可在线阅读,更多相关《理论力学03空间力系的简化和平衡.ppt(70页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、12 工程中常常存在着很多各力的作用线不在同一平面内的力系,即空间力系,空间力系是最一般的力系。(a)图为空间汇交力系;(b)图为空间任意力系;(b)图中去了风力为空间平行力系。迎 面风 力侧 面风 力b3第五章第五章 空间力系空间力系 51 空间汇交力系空间汇交力系 52 空间力偶系空间力偶系 53 力对点的矩与力对轴的矩力对点的矩与力对轴的矩 54 空间一般力系向一点的简化空间一般力系向一点的简化 55 空间一般力系简化结果的讨论空间一般力系简化结果的讨论 56 空间一般力系的平衡方程及应用空间一般力系的平衡方程及应用 57 平行力系的中心与物体的重心平行力系的中心与物体的重心 习题课习题

2、课 4一、空间力的投影(与力的分解)一、空间力的投影(与力的分解):1.1.力在空间的表示力在空间的表示:力的三要素:大小、方向、作用点(线)大小:大小:作用点作用点:在物体的哪点就是哪点 方向方向:由、三个方向角确定 由仰角 与俯角 来确定。FxyO3-1 3-1 空间汇交力系空间汇交力系52、一次投影法(直接投影法)、一次投影法(直接投影法)由图可知:3、二次投影法(间接投影法)、二次投影法(间接投影法)当力与各轴正向夹角不易确定时,可先将 F 投影到xy面上,然后再投影到x、y轴上,即64、力沿坐标轴分解、力沿坐标轴分解:若以 表示力沿直角坐标轴的正交分量,则:而:所以:FxFyFz7

3、1、几何法、几何法:与平面汇交力系的合成方法相同,也可用力多 边形方法求合力。即:合力等于各分力的矢量和2、解析法、解析法:由于 代入上式合力由 为合力在x轴的投影,二、空间汇交力系的合成与平衡二、空间汇交力系的合成与平衡:83、合力投影定理、合力投影定理:空间力系的合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。9 称为平衡方程称为平衡方程空间汇交力系的平衡方程空间汇交力系的平衡方程解析法解析法平衡充要条件为:几何法几何法平衡充要条件为该力系的力多边形封闭力多边形封闭。空间汇交力系平衡的充要条件是:空间汇交力系平衡的充要条件是:力系的合力为零,力系的合力为零,即:即:10 在平面中:

4、力对点的矩是代数量。在空间中:力对点的矩是矢量。例例 汽车反镜的球铰链3-2 3-2 空间力矩理论空间力矩理论一、力对点的矩的矢量表示一、力对点的矩的矢量表示如果r 表示A点的矢径,则:11即:力对点的矩等于力对点的矩等于矩心矩心到该力到该力作用点的矢径与该力的矢量积。作用点的矢径与该力的矢量积。两矢量夹角为O力矩矢在直角坐标中的三个投影12定义:定义:它是代数量,方向规定 +二、力对轴的矩二、力对轴的矩结论结论:力对力对/它的轴的它的轴的矩为零。即力矩为零。即力F与轴共与轴共面时,力对轴之矩为零。面时,力对轴之矩为零。证证力对空间点之矩在该轴上的投影力对空间点之矩在该轴上的投影13力对轴之矩

5、的计算方法:力对轴之矩的计算方法:1、先将力向该轴的正交平面分解,再计算该分力对轴的平面力矩。2、力矩关系定理 定理定理:力对轴之矩等于该力对轴上任意一点之矩在该轴上的力对轴之矩等于该力对轴上任意一点之矩在该轴上的投影。投影。这就是力对点之矩与对通过该点轴之矩的关系这就是力对点之矩与对通过该点轴之矩的关系。即:需要证明设转轴为设转轴为Z轴,其上任一点为原点轴,其上任一点为原点O,到,到力作用线上任一点之距离为下式表达力作用线上任一点之距离为下式表达r14比较即得:前述有:一般推导时各量均应设为正值15力对任意轴之矩的求法:力对任意轴之矩的求法:先求出力对该轴上任意一点之矩,再在该轴的方向做投影

6、先求出力对该轴上任意一点之矩,再在该轴的方向做投影-与该与该轴矢量做点积。等于这力对于该轴的矩。轴矢量做点积。等于这力对于该轴的矩。两平面的法矢分别为:轴线方程:轴方向矢:对任意轴的矩对任意轴的矩16173-3 3-3 空间力偶理论空间力偶理论 由于空间力偶除大小、转向外,还必须确定力偶的作用面,所以空间力偶矩必须用矢量表示。一、力偶矩用矢量表示:一、力偶矩用矢量表示:力偶的转向为右手螺旋定则。从力偶矢末端看去,逆时针转动为正。空间力偶是一个自由矢量。18 证证 作平面II/,线段cd/ab 各作一对平衡力作用在c、d点 并使其与F1平行和相等 由ad、bc点平行力合成得-R=R 在I内的力偶

7、(F1,F1)等效变 成II内的(F2,F2)力偶等效定理力偶等效定理 作用在同一刚体的两平行平面的两个力偶,若它们的转向相作用在同一刚体的两平行平面的两个力偶,若它们的转向相同,力偶矩的大小相等,则两个力偶等效。同,力偶矩的大小相等,则两个力偶等效。19空间力偶系的合成与平衡空间力偶系的合成与平衡 由于空间力偶系是自由矢量,只要方向不变,可移至任意一点,故可使其滑至汇交于某点,由于是矢量,它的合成符合矢量运算法则。合力偶矩=分力偶矩的矢量和显然空间力偶系的平衡条件是:20 把研究平面一般力系的简化方法拿来研究空间一般力系的简化问题,但须把平面坐标系扩充为空间坐标系。3-4 3-4 空间任意力

8、系的简化和平衡空间任意力系的简化和平衡 设作用在刚体上有空间一般力系向向O点简化(点简化(O点任选)点任选)一、空间任意力系向指定点简化一、空间任意力系向指定点简化21根据力线平移定理,将各力平行搬到O点得到一空间汇交力系:和附加力偶系 注意 分别是各力对O点的矩。由于空间力偶是自由矢量,总可汇交于O点。22合成 得主矢即(主矢 过简化中心O,且与O点的选择无关)合成 得主矩即:(主矩 与简化中心O有关)23若取简化中心简化中心O点为坐标原点,则:主矢大小主矢大小 主矢方向主矢方向 根据力对点之矩与力对轴之矩的关系:则主矩大小主矩大小为:主矩方向主矩方向:24 二、空间任意力系的平衡条件:二、

9、空间任意力系的平衡条件:所以空间任意力系的平衡方程空间任意力系的平衡方程为:还有四矩式,五矩式和六矩式,同时各有一定限制条件。25空间汇交力系的平衡方程为:空间汇交力系的平衡方程为:因为各力线都汇交于一点,各轴都通过因为各力线都汇交于一点,各轴都通过该点,故各力矩方程都成为了恒等式。该点,故各力矩方程都成为了恒等式。空间平行力系的平衡方程,设各力线都空间平行力系的平衡方程,设各力线都/z 轴。轴。因为因为 均成为了恒等式。均成为了恒等式。26 空间一般力系向一点简化得一主矢和主矩,下面针对主矢、主矩的不同情况分别加以讨论。三三三三 空间一般力系简化结果的分析空间一般力系简化结果的分析空间一般力

10、系简化结果的分析空间一般力系简化结果的分析1 1、若 ,则该力系平衡平衡(下节专门讨论)。2 2、若 则力系可合成一个合力偶合力偶,其矩等于原力系对于简化中心的主矩MO。此时主矩与简化中心的位置无关。3 3、若 则力系可合成为一个合力合力,主矢 等于原力系合力矢 ,合力 通过简化中心O点。(此时与简化中心有关,换个简化中心,主矩不为零)27 4 4、若 此时分两种情况讨论。即:若时可进一步简化,将MO变成(R,R)使R与R抵消只剩下R。28若 时,为力螺旋的情形为力螺旋的情形(新概念,又移动又转动)例例 拧螺丝 炮弹出膛时炮弹螺线R不平行也不垂直M0,最一般的成任意角 在此种情况下,首先把MO

11、 分解为M/和M 将M/和M 分别按、处理。29M 使主矢R搬家,搬家的矩离:所以在O点处形成一个力螺旋点处形成一个力螺旋。因为M/是自由矢量,可将M/搬到O处M/不变,结论:空间力系最终可简化成四种情况之一:一力、力空间力系最终可简化成四种情况之一:一力、力偶、力螺旋或平衡。因此空间力系的最简力系为一力、偶、力螺旋或平衡。因此空间力系的最简力系为一力、或一力偶、或一力螺旋或一力偶、或一力螺旋.30注意注意 力系简化中的不变量(不随简化中心改变)有:R,M/简化中心为O时:为M 当简化中心为O时,为M 但M/总是不变的(它是它是 原力系中的力偶与简化原力系中的力偶与简化 中心无关中心无关)31

12、定理定理:合力对任一点的矩,等于各分力对同一点的矩的矢量和合力对任一点的矩,等于各分力对同一点的矩的矢量和即:四、合力矩定理四、合力矩定理以汇交力系为例证证 R x y z O Fn F3 F2 F1Ar32将 向坐标轴投影,得定理定理:合力对任一轴的矩,等于各分力对同一轴的矩的代数和合力对任一轴的矩,等于各分力对同一轴的矩的代数和合力矩定理不仅对汇交力系成立,而且对一般力系也成立。33例 3.4 在边长为 a 的正方体顶点 O、F、C 和 E 上作用有大小都等于 P 的力,方向如图。求此力系的最终简化结果。先分解再合成先分解再合成34点积为零作用线方程作用线方程35例 3.6 正方形薄板 A

13、BCD,边长为 a,由 6 根直杆支撑,板和各杆均在立方体 ABCDEFGH 的面上;如图所示。在 A 点沿板边 AD 作用水平力 P,板和各杆的重量不计。求各杆内力。解:为了画图表示更清,我们假设各杆受压,各杆对板的作用力如图。【薄板 ABCD】36仅FN2有矩N5 已知,仅N6未知37以上解题过程并不是唯一的,比如,在求出N5后,可以将力系向 AB 轴投影求出 N2;可以在一开始,将力系向 BC 轴投影求出N4;等等。通过上例可见,在空间力系平衡问题的求解中,如果将力投影轴和计算力矩的轴选取合适、平衡计算的顺序选取合适,计算工作可以大大简化,希望学生通过练习掌握这种技能38 空间平行力系,

14、当它有合力时,合力的作用点C 就是此空间平行力系的中心空间平行力系的中心。而物体重心问题可以看成是空间平行力系中心的一个特例。3-5 3-5 平行力系中心与重心平行力系中心与重心一、空间平行力系的中心一、空间平行力系的中心1 1、平行力系的中心、平行力系的中心由合力矩定理:合力作用线上任一点矢径为39其中其中e 为为 正方向的单位矢量正方向的单位矢量注意注意e方向的任意性,即有:方向的任意性,即有:rc为合力作用线上一点的矢径;与平行力系的指向 无关;由于力系中各力大小 一定、相对刚体有固定作用点,即对于取定的固定点 O,矢径r 为常矢量,它代表刚体内一个确定的点 C,无论平行力系中各力绕各自

15、的作用点怎样转动,其合力作用线总是通过刚体内一个确定的点 C,点 C 就是平行力系中心。40如果把物体的重力都看成为平行力系,则求重心问题就是求平行力系的中心问题。由合力矩定理:物体分割的越多,每一小部分体积越小,求得的重心位置就越准确。在极限情况下,(n-),常用积分法求物体的重心位置。二、物体的重心二、物体的重心:41设 i表示第i个小部分每单位体积的重量,Vi第i个小体积,则 代入上式并取极限,可得:式中 ,上式为重心重心C 坐标的精确公式坐标的精确公式。对于均质物体,=恒量,上式成为:同理对于薄平面和细长杆均可写出相应的公式。42 根据平行力系中心位置与各平行力系的方向无关的性质,将力

16、线转成与y轴平行,再应用合力矩定理对x 轴取矩得:综合上述得重心坐标公式重心坐标公式为:若以Pi=mig ,P=Mg 代入上式可得质心公式43 同理:可写出均质体,均质板,均质杆的形心(几何中心)坐标分别为:44解解:由于对称关系,该圆弧重心必在Ox轴,即yC=0。取微段下面用积分法求物体的重心实例求物体的重心实例:例例 求半径为R,顶角为2 的均质圆弧的重心。O45三、重心的求法三、重心的求法:组合法例 3.7 求出图示两种平面图形(阴影部分)的重心坐标解解:46解解:求:该组合体的重心?已知:47简单图形的面积及重心坐标公式可由表中查出。实验法:悬挂法称重法48 第 3章 空间力系 3.8

17、(力偶平衡);3.10(汇交力平衡);3.14,3.16(练习空间力系取矩方法3.17(质心)49 一、概念及内容一、概念及内容:1、空间力偶及空间力对点之矩是矢量,2、空间力对轴之矩和平面力偶、平面力对点之矩是代数量。3、空间力系合力投影定理合力投影定理:4、空间力系的合力矩定理合力矩定理:5、空间力对点之矩与对轴之矩的关系空间力对点之矩与对轴之矩的关系:第三章第三章 空间力系空间力系习题课习题课50二、基本方程二、基本方程 1、空间力系的平衡方程空间力系的平衡方程空空间间一一般般力力系系空空间间汇汇交交力力系系空空间间力力偶偶系系空空间间x轴轴力力系系空空间间xoy 平平面面的的力力系系四

18、矩式四矩式、五矩式和六矩式的附加条件均 为使方程式独立。51三、解题步骤、技巧与注意问题三、解题步骤、技巧与注意问题:1、解题步骤解题步骤:选研究对象 (与平面的相同)画受力图 选坐标、列方程 解方程、求出未知数 2、空间力系的几个问题、空间力系的几个问题:x,y,z(三个取矩轴和三个投影轴可以不重合)可以任选的 六个轴。取矩方程不能少于三个(MO是矢量)空间力系独立方程六个(空间物体六个自由度)平面三个自由度空间力系中也包括摩擦问题。52 2、解题技巧解题技巧:用取矩轴代替投影轴,解题常常方便 投影轴尽量选在与未知力,力矩轴选在与未知力平行或相交 一般从整体局部的研究方法。摩擦力F=N f,

19、方向与运动趋势方向相反。3、注意问题:注意问题:力偶在投影轴中不出现(即在投影方程中不出现)空间力偶是矢量,平面力偶是代数量。求物体重心问题常用组合法。对于均质物体,重心、中心、形心为同一点。53例题54例例1 已知已知:P=2000N,C点在Oxy平面内求:力求:力P对三个坐标轴的矩解解:选研究对象;画受力图;选坐标列方程。5556 例例2 已知:AB=3m,AE=AF=4m,Q=20kN;求:绳BE、BF的拉力和杆AB的内力由C点:解:分别研究C点和B点作受力图57由B点:58此题训练:此题训练:力偶不出现在投影式中力偶在力矩方程中出现是把力偶当成矢量后,类似力在投影式中投影力争一个方程求

20、一个支反力了解空间支座反力例例3 曲杆ABCD,ABC=BCD=900,AB=a,BC=b,CD=c,m2,m3 求:支座反力及m1=?59解解:60例例4 已知:AB杆由 AD,BC两条绳拉置于两光滑平面,A、C在同一垂线上,AB重80N,A、B光滑接触,ABC=BCE=600,且AD水平,AC铅直。求平衡时,TA,TB及支座A、B的反力。解:对象为解:对象为AB杆,画受力图杆,画受力图思路:要巧选投影轴和取矩轴,使一个方程解出一个未知数。思路:要巧选投影轴和取矩轴,使一个方程解出一个未知数。6162631、球形铰链、球形铰链空间约束的种类:空间约束的种类:观察物体在空间的六种(沿三轴移动和绕三轴转动)可能观察物体在空间的六种(沿三轴移动和绕三轴转动)可能的运动中,有哪几种运动被约束所阻碍,有阻碍就有约束反力。的运动中,有哪几种运动被约束所阻碍,有阻碍就有约束反力。阻碍移动为反力,阻碍转动为反力偶。阻碍移动为反力,阻碍转动为反力偶。例例64球形铰链球形铰链652、向心轴承,蝶铰链,滚珠、向心轴承,蝶铰链,滚珠(柱柱)轴承轴承663、滑动轴承、滑动轴承 674、止推轴承、止推轴承 685、带有销子的夹板、带有销子的夹板696、空间固定端、空间固定端70

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁