《新《高考试卷》2023年黑龙江高考理科数学真题8.doc》由会员分享,可在线阅读,更多相关《新《高考试卷》2023年黑龙江高考理科数学真题8.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021年黑龙江高考理科数学真题2021年普通高等学校招生全国统一考试理科数学乙卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设2(z+)+3(z-)=4+6i,则z=( ).A.1-2iB.1+2iC.1+iD.1-i2.已知集合S=s|s=2n+1,
2、nZ,T=t|t=4n+1,nZ,则ST=( )A.B.S C.T D.Z3.已知命题p:xR,sinx1;命题q:xR,1,则下列命题中为真命题的是( )A.pqB.pqC.pqD.(pVq)4.设函数f(x)=,则下列函数中为奇函数的是( )A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+15.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )A.B.C.D.6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A
3、.60种B.120种C.240种D.480种7.把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin(x-)的图像,则f(x)=( )A.sin()B. sin()C. sin()D. sin()8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于的概率为( )A.B.C.D.9.魏晋时期刘徽撰写的海岛算经是关于测量的数学著作,其中第一题是测量海盗的高。如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表
4、目距的差”。则海岛的高AB=( ).A:B:C:D:10.设a0,若x=a为函数的极大值点,则( ).A:abB:abC:aba2D:aba211.设B是椭圆C:(ab0)的上顶点,若C上的任意一点P都满足,则C的离心率的取值范围是( ).A:B:C:D:12.设,则( ).A:abcB:bcaC:bacD:cab二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线C:(m0)的一条渐近线为+my=0,则C的焦距为 .14.已知向量a=(1,3),b=(3,4),若(a-b)b,则= 。15.记ABC的内角A,B,C的对边分别为a,b,c,面积为,B=60,a2+c2=3ac,则b
5、= .16.以图为正视图和俯视图,在图中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17-21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)某厂研究了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.4
6、10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为s12和s22(1) 求, s12,s22;(2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果-,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).18.(12分)如图,四棱锥P-ABCD的底面是矩形,PD底面ABCD,PD=DC=1,M为BC的中点,且PBAM,(1) 求BC;(2) 求二面角A-PM-B的正弦值。19.(12分)记Sn为数列an的前n项和,bn为数列Sn的前n项和,已知=2.(1) 证明:数
7、列bn是等差数列;(2) 求an的通项公式.20.(12分)设函数f(x)=ln(a-x),已知x=0是函数y=xf(x)的极值点。(1) 求a;(2) 设函数g(x)=,证明:g(x)1.21.(12 分)己知抛物线C:x2=2py(p0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB是C的两条切线,A,B是切点,求PAB的最大值.(二)选考题:共10分,请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.选修4一4:坐标系与参数方程(10分)在直角坐标系xOy中,C的圆心为C(2,1),半径为1.(1)写出C的一个参数方程;的极坐标方程化为直角坐标方程;(2)过点F(4,1)作C的两条切线, 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条直线的极坐标方程.23.选修4一5:不等式选讲(10分)已知函数f(x)=|x-a|+|x+3|.(1)当a=1时,求不等式f(x)6的解集;(2)若f(x) a ,求a的取值范围.本文档来自五米高考*AT*4507FAD4AA7142D19888BC7E81EC57F6*AT*4AC0D6E3CA4D4782B0FF390BACCF591E*AT*D49B26F72D19446B9151ADE4A7E21992