《最新人教版七年级初一数学上册第一学期一元一次方程知识点考点及经典应用题专练及答案.doc》由会员分享,可在线阅读,更多相关《最新人教版七年级初一数学上册第一学期一元一次方程知识点考点及经典应用题专练及答案.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、最新人教版七年级初一数学上册第一学期一元一次方程知识点考点及经典应用题专练及答案人教版七年级上册数学一元一次方程经典应用题及答案 应用题 知能点 1 :市场经济、打折销售问题 1 商品利润商品售价商品本钱价 2 商品利润率 100 3 商品销售额商品销售价商品销售量 4 商品的销售利润销售价本钱价销售量 5 商品打几折出售,就是按原价的百分之几十出售,如商品打 8 折出售,即按原价的 80 出售 1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,某种皮鞋进价 60 元一双,八折出售后商家获利润率为 40 ,问这种皮鞋标价是多少元?优惠价是多少元? 2.一家商店将某种服装按进价进步 40
2、 后标价,又以 8 折优惠卖出,结果每件仍获利 15 元,这种服装每件的进价是多少? 3.一家商店将一种自行车按进价进步 45 后标价,又以八折优惠卖出,结果每辆仍获利 50 元,这种自行车每辆的进价是多少元?假设设这种自行车每辆的进价是 _ 元,那么所列方程为 A.45 1+80 _-_=50 B.80 1+45 _ - _ = 50 C._-80 1+45 _ = 50 D.80 1-45 _ - _ = 50 4 某商品的进价为 800 元,出售时标价为 120_元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于 5 ,那么至多打几折 5 一家商店将某种型号的彩电先按原售价进
3、步 40 ,然后在广告中写上“大酬宾,八折优惠”经顾客投拆后,拆法部门按已得非法收入的 10 倍处以每台 2700 元的罚款,求每台彩电的原售价 知能点 2 :方案选择问题 6 某蔬菜公司的一种绿色蔬菜,假设在市场上直接销售,每吨利润为 1000 元, 经粗加工后销售,每吨利润可达 4500 元,经精加工后销售,每吨利润涨至 7500 元,当地一家公司收买这种蔬菜 140 吨,该公司的加工消费才能是:假如对蔬菜进展精加工,每天可加工 16 吨,假如进展精加工,每天可加工 6 吨, 但两种加工方式不能同时进展,受季度等条件限制,公司必须在 15 天将这批蔬菜全部销售或加工完毕,为此公司研制了三种
4、可行方案:方案一:将蔬菜全部进展粗加工 方案二:尽可能多地对蔬菜进展粗加工,没来得及进展加工的蔬菜, 在市场上直接销售 方案三:将局部蔬菜进展精加工,其余蔬菜进展粗加工,并恰好 15 天完成 你认为哪种方案获利最多?为什么? 7 某市挪动通讯公司开设了两种通讯业务:“全球通”使用者先缴 50 元月根底费,然后每通话 1 分钟,再付 费 0.2 元;“神州行”不缴月根底费,每通话 1 分钟需付话费 0.4 元这里均指市内 假设一个月内通话 _ 分钟,两种通话方式的费用分别为 y 1 元和 y 2 元 1 写出 y 1 , y 2 与 _ 之间的函数关系式即等式 2 一个月内通话多少分钟,两种通话
5、方式的费用一样? 3 假设某人预计一个月内使用话费 120 元,那么应选择哪一种通话方式较合算? 8 某地区居民生活用电根本价格为每千瓦时 0.40 元,假设每月用电量超过 a 千瓦时,那么超过局部按根本电价的 70 收费。 1 某户八月份用电 84 千瓦时,共交电费 30.72 元,求 a 2 假设该用户九月份的平均电费为 0.36 元,那么九月份共用电多少千瓦时? 应交电费是多少元? 9 某家电商场方案用 9 万元从消费厂家购进 50 台电视机该厂家消费 3 种不同型号的电视机,出厂价分别为 A 种每台 1500 元, B 种每台 2100 元, C 种每台 2500 元 1 假设家电商场
6、同时购进两种不同型号的电视机共 50 台,用去 9 万元,请你研究一下商场的进货方案 2 假设商场销售一台 A 种电视机可获利 150 元,销售一台 B 种电视机可获利 20_元, 销售一台 C 种电视机可获利 250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案? 10.小刚为书房买灯。现有两种灯可供选购,其中一种是 9 瓦的节能灯,售价为 49 元 / 盏,另一种 是 40 瓦的白炽灯,售价为 18 元 / 盏。假设两种灯的照明效果一样,使用寿命都可以到达 2800 小时。小刚家所在地的电价是每千瓦时 0.5 元。(1).设照明时间是 _ 小时,请用含 _
7、 的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。费用 = 灯的售价 + 电费(2).小刚想在这种灯中选购两盏。假定照明时间是 3000 小时,使用寿命都是 2800 小时。请你设计一种费用最低的选灯照明方案,并说明理由。知能点 3 储蓄、储蓄利息问题 (1 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的 20 付利息税 (2 利息 = 本金利率期数 本息和 = 本金 + 利息 利息税 = 利息税率 20 (3 11.某同学把 250 元钱存入银行,整存整取,存期为半年。半年后共得本息和 252.7 元,求银行
8、半年期的年利率是多少?不计利息税一年 2.25 三年 2.70 六年 2.88 12.为了准备 6 年后小明上大学的学费 20_0 元,他的父亲如今就参加了教育储蓄,下面有三种教育储蓄方式:(1 直接存入一个 6 年期;(2 先存入一个三年期, 3 年后将本息和自动转存一个三年期;(3 先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开场存入的本金比拟少? 13 小刚的爸爸前年买了某公司的二年期债券 4500 元,今年到期,扣除利息税后,共得本利和约 4700 元,问这种债券的年利率是多少准确到 0.01 14 北京海淀区白云商场购进某种商品的进价是每件 8 元,销售
9、价是每件 10 元销售价与进价 的差价 2 元就是卖出一件商品所获得的利润现为了扩大销售量, 把每件的销售价降低 _ 出售, 但要求卖出一件商品所获得的利润是降价前所获得的利润的 90 ,那么 _ 应等于 A 1 B 1.8 C 2 D 10 15.用假设干元人民币购置了一种年利率为 10 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券利率不变,到期后得本息和 1320 元。问张叔叔当初购置这咱债券花了多少元? 知能点 4 :工程问题 工作量工作效率工作时间 工作效率工作量工作时间 工作时间工作量工作效率 完成某项任务的各工作量的和总工作量 1 1
10、6.一件工作,甲独作 10 天完成,乙独作 8 天完成,两人合作几天完成? 17.一件工程,甲独做需 15 天完成,乙独做需 12 天完成,现先由甲、乙合作 3 天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 18.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管 6 小时可注满水池;单独开乙管 8 小时可注满水池,单独开丙管 9 小时可将满池水排空,假设先将甲、乙管同时开放 2 小时,然后翻开丙管,问翻开丙管后几小时可注满水池? 19.一批工业最新动态信息输入管理储存网络,甲独做需 6 小时,乙独做需 4 小时,甲先做 30 分钟,然后甲、乙一起做,那么甲、乙
11、一起做还需多少小时才能完成工作? 20.某车间有 16 名工人,每人每天可加工甲种零件 5 个或乙种零件 4 个在这 16 名工人中,一局部人加工甲种零件,其余的加工乙种零件 每加工一个甲种零件可获利 16 元,每加工一个乙种零件可获利 24 元假设此车间一共获利 1440 元, 求这一天有几个工人加工甲种零件 21.一项工程甲单独做需要 10 天,乙需要 12 天,丙单独做需要 15 天,甲、丙先做 3 天后,甲因事 离去,乙参与工作,问还需几天完成? 知能点 5 :假设干应用问题等量关系的规律 1 和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的【关
12、键词】:p 】: 语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。增长量原有量增长率 如今量原有量增长量 2 等积变形问题 常见几何图形的面积、体积、周长计算公式,根据形虽变,但体积不变 圆柱体的体积公式 V= 底面积高 S h r 2 h 长方体的体积 V 长宽高 abc 22.某粮库装粮食,第一个仓库是第二个仓库存粮的 3 倍,假如从第一个仓库中取出 20 吨放入第二个仓库中,第二个仓库中的粮食是第一个中的 。问每个仓库各有多少粮食? 23.一个装满水的内部长、宽、高分别为 300 毫米, 300 毫米和 80 毫米的长方体铁盒中的水,倒入
13、一个内径为 20_毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高准确到 0.1 毫米, 3.14 24.长方体甲的长、宽、高分别为 260mm , 150mm , 325mm ,长方体乙的底面积为 130 130mm 2 ,又知甲的体积是乙的体积的 2.5 倍,求乙的高? 知能点 6 :行程问题 根本量之间的关系:路程速度时间 时间路程速度 速度路程时间 1 相遇问题 2 追及问题 快行距慢行距原距 快行距慢行距原距 3 航行问题 顺水风速度静水风速度水流风速度 逆水风速度静水风速度水流风速度 抓住两码头间间隔 不变,水流速和船速静不速不变的特点考虑相等关系 25.甲、乙两站相距 480 公里
14、,一列慢车从甲站开出,每小时行 90 公里,一列快车从乙站开出, 每小时行 140 公里。 1 慢车先开出 1 小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? 2 两车同时开出,相背而行多少小时后两车相距 600 公里? 3 两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距 600 公里? 4 两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? 5 慢车开出 1 小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析p 。26.甲乙两人在同一道路上从相距 5 千米的
15、 A 、 B 两地同向而行,甲的速度为 5 千米 / 小时,乙的速度为 3 千米 / 小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,狗的速度为 15 千米 / 小时,求此过程中,狗跑的总路程是多少? 27.某船从 A 地顺流而下到达 B 地,然后逆流返回,到达 A 、 B 两地之间的 C 地,一共航行了 7 小时,此船在静水中的速度为 8 千米 / 时,水流速度为 2 千米 / 时。A 、 C 两地之间的路程为 10 千米,求 A 、 B 两地之间的路程。28 有一火车以每分钟 600 米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁
16、桥需多 5 秒,又知第二铁桥的长度比第一铁桥长度的 2 倍短 50 米,试求各铁桥的长 29 甲、乙两地相距 120 千米,乙的速度比甲每小时快 1 千米,甲先从 A 地出发 2 小时后,乙 从 B 地出发,与甲相向而行经过 10 小时后相遇,求甲乙的速度? 30 一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以 18 米 / 分的速度从队头至队尾又返回,队伍的行进速度为 14 米 / 分。问: 假设队长 320 米,那么通讯员几分钟返回? 假设通讯员用了 25 分钟,那么队长为多少米? 31 一架飞机在两个城市之间飞行,风速为 24 千米 / 小时,顺风飞行需要 2 小时
17、50 分,逆风飞行需要 3 小时,求两个城市之间的飞行路程? 32 一轮船在甲、乙两码头之间航行,顺水航行需要 4 小时,逆水航行需要 5 小时,水流的速度为 2 千米 / 时,求甲、乙两码头之间的间隔 。知能点 7 :数字问题 1 要搞清楚数的表示方法:一个三位数的百位数字为 a ,十位数字是 b ,个位数字为 c 其中 a 、 b 、 c 均为整数,且 1 a 9 , 0 b 9 , 0 c 9 那么这个三位数表示为:100a+10b+c 。然后抓住数字间或新数、原数之间的关系找等量关系列方程 2 数字问题中一些表示:两个连续整数之间的关系,较大的比拟小的大 1 ;偶数用 2n 表示,连续
18、的偶数用 2n+2 或 2n2 表示;奇数用 2n+1 或 2n1 表示。33.一个三位数,三个数位上的数字之和是 17 ,百位上的数比十位上的数大 7 ,个位上的数是十位上的数的 3 倍,求这个三位数 .34.一个两位数,个位上的数是十位上的数的 2 倍,假如把十位与个位上的数对调,那么所得的两位数比原两位数大 36 ,求原来的两位数 注意:虽然我们分了几种类型对应用题进展了研究,但实际生活中的问题是千变万化的,远不止这几类问题。因此我们要想学好列方程解应用题,就要学会观察事物,关心日常消费生活中的各种问题,如市场经济问题等等,要会详细情况详细分析p ,灵敏运用所学知识,认真审题,适当设元,
19、寻找等量关系,从而列出方程,解出方程,使问题得解 答案 1. 分析p 通过列表分析p 条件,找到等量关系式 进价 折扣率 标价 优惠价 利润率 60 元 8 折 _ 元 80_ 40 等量关系:商品利润率 = 商品利润 / 商品进价 解:设标价是 _ 元, 解之:_=105 优惠价为 2. 分析p 探究题目中隐含的条件是关键,可直接设出本钱为 _ 元 进价 折扣率 标价 优惠价 利润 _ 元 8 折 1+40 _ 元 80 1+40 _ 15 元 等量关系:利润 = 折扣后价格 进价折扣后价格进价 =15 解:设进价为 _ 元, 80_ 1+40 _=15 , _=125 答:进价是 125
20、元。3.B 4 解:设至多打 _ 折,根据题意有 100=5 解得 _=0.7=70 答:至多打 7 折出售 5 解:设每台彩电的原售价为 _ 元,根据题意,有 10_ 1+40 80-_=2700 , _=2250 答:每台彩电的原售价为 2250 元 6.解:方案一:获利 140 4500=630000 元方案二:获利 15 6 7500+ 140-15 6 1000=725000 元方案三:设精加工 _ 吨,那么粗加工 140-_ 吨 依题意得 =15 解得 _=60 获利 60 7500+ 140-60 4500=810000 元因为第三种获利最多,所以应选择方案三 7.解: 1 y
21、1 =0.2_+50 , y 2 =0.4_ 2 由 y 1 =y 2 得 0.2_+50=0.4_ ,解得 _=250 即当一个月内通话 250 分钟时,两种通话方式的费用一样 3 由 0.2_+50=120 ,解得 _=350 由 0.4_+50=120 ,得 _=300 因为 350300 故第一种通话方式比拟合算 8.解: 1 由题意,得 0.4a+ 84-a 0.40 70=30.72 解得 a=60 2 设九月份共用电 _ 千瓦时,那么 0.40 60+ _-60 0.40 70=0.36_ 解得 _=90 所以 0.36 90=32.40 元答:九月份共用电 90 千瓦时,应交电
22、费 32.40 元 9 解:按购 A , B 两种, B , C 两种, A , C 两种电视机这三种方案分别计算, 设购 A 种电视机 _ 台,那么 B 种电视机 y 台 1 中选购 A , B 两种电视机时, B 种电视机购 50-_ 台,可得方程 1500_+2100 50-_ =90000 即 5_+7 50-_ =300 2_=50 _=25 50-_=25 中选购 A , C 两种电视机时, C 种电视机购 50-_ 台, 可得方程 1500_+2500 50-_ =90000 3_+5 50-_ =1800 _=35 50-_=15 当购 B , C 两种电视机时, C 种电视机
23、为 50-y 台 可得方程 2100y+2500 50-y =90000 21y+25 50-y =900 , 4y=350 ,不合题意 由此可选择两种方案:一是购 A , B 两种电视机 25 台;二是购 A 种电视机 35 台, C 种电视机 15 台 2 假设选择 1 中的方案,可获利 150 25+250 15=8750 元假设选择 1 中的方案,可获利 150 35+250 15=9000 元90008750 故为了获利最多,选择第二种方案 10.答案:0.005_+49 20_ 11. 分析p 等量关系:本息和 = 本金 1+ 利率解:设半年期的实际利率为 _ ,依题意得方程 25
24、0 1+_ =252.7 , 解得 _=0.0108 所以年利率为 0.0108 2=0.0216 答:银行的年利率是 21.6 12. 分析p 这种比拟几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进展比拟。解:(1 设存入一个 6 年的本金是 _ 元 , 依题意得方程 _ 1+6 2.88 =20_0 ,解得 _=17053 (2 设存入两个三年期开场的本金为 Y 元, Y 1+2.7 3 (1+2.7 3 =20_0 , _=17115 (3 设存入一年期本金为 Z 元 , Z 1+2.25 6 =20_0 , Z=17894 所以存入一个 6 年期的本金最少。1
25、3 解:设这种债券的年利率是 _ ,根据题意有 4500+4500 2 _ 1-20 =4700 , 解得 _=0.03 答:这种债券的年利率为 0.03 14 C 点拨:根据题意列方程,得 10-8 90=10 1-_ -8 ,解得 _=2 ,应选 C 15.220_ 元 16. 分析p 甲独作 10 天完成,说明的他的工作效率是 乙的工作效率是 等量关系是:甲乙合作的效率合作的时间 =1 解:设合作 _ 天完成 , 依题意得方程 答:两人合作 天完成 17. 分析p 设工程总量为单位 1 ,等量关系为:甲完成工作量 + 乙完成工作量 = 工作总量。解:设乙还需 _ 天完成全部工程,设工作总
26、量为单位 1 ,由题意得, 答:乙还需 天才能完成全部工程。18. 分析p 等量关系为:甲注水量 + 乙注水量 - 丙排水量 =1 。解:设翻开丙管后 _ 小时可注满水池, 由题意得, 答:翻开丙管后 小时可注满水池。19.解:设甲、乙一起做还需 _ 小时才能完成工作 根据题意,得 + + _=1 解这个方程,得 _= =2 小时 12 分 答:甲、乙一起做还需 2 小时 12 分才能完成工作 20.解:设这一天有 _ 名工人加工甲种零件,那么这天加工甲种零件有 5_ 个,乙种零件有 4 16-_ 个 根据题意,得 16 5_+24 4 16-_ =1440 解得 _=6 答:这一天有 6 名
27、工人加工甲种零件 21.设还需 _ 天。22.设第二个仓库存粮 23.解:设圆柱形水桶的高为 _ 毫米,依题意,得 2 _=300 300 80 _ 229.3 答:圆柱形水桶的高约为 229.3 毫米 24.设乙的高为 25. 1 分析p :相遇问题,画图表示为:等量关系是:慢车走的路程 + 快车走的路程 =480 公里。解:设快车开出 _ 小时后两车相遇,由题意得, 140_+90(_+1)=480 解这个方程, 230_=390 答:快车开出 小时两车相遇 分析p :相背而行,画图表示为:等量关系是:两车所走的路程和 +480 公里 =600 公里。解:设 _ 小时后两车相距 600 公
28、里, 由题意得, (140+90)_+480=600 解这个方程, 230_=120 _= 答:小时后两车相距 600 公里。 3 分析p :等量关系为:快车所走路程慢车所走路程 +480 公里 =600 公里。解:设 _ 小时后两车相距 600 公里,由题意得, (140 90)_+480=60050_=120 _=2.4 答:2.4 小时后两车相距 600 公里。分析p :追及问题,画图表示为:等量关系为:快车的路程 = 慢车走的路程 +480 公里。解:设 _ 小时后快车追上慢车。由题意得, 140_=90_+480 解这个方程, 50_=480 _=9.6 答:9.6 小时后快车追上慢
29、车。分析p :追及问题,等量关系为:快车的路程 = 慢车走的路程 +480 公里。解:设快车开出 _ 小时后追上慢车。由题意得, 140_=90(_+1)+480 50_=570 _=11.4 答:快车开出 11.4 小时后追上慢车。26. 分析p 追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。狗跑的总路程 = 它的速度时间,而它用的总时间就是甲追上乙的时间 解:设甲用 _ 小时追上乙,根据题意列方程 5_=3_+5 解得 _=2.5 ,狗的总路程:15 2.5=37.5 答:狗的总路程是 37.5 千米。27. 分析p 这属于行船问题,这类问题中要弄清: 1 顺水速
30、度 = 船在静水中的速度 + 水流速度; 2 逆水速度 = 船在静水中的速度水流速度。相等关系为:顺流航行的时间 + 逆流航行的时间 =7 小时。解:设 A 、 B 两码头之间的航程为 _ 千米,那么 B 、 C 间的航程为 (_-10) 千米, 由题意得, 答:A 、 B 两地之间的路程为 32.5 千米。28 解:设第一铁桥的长为 _ 米,那么第二铁桥的长为 2_-50 米, 过完第一铁桥所需的时间为 分过完第二铁桥所需的时间为 分依题意,可列出方程 + = 解方程 _+50=2_-50 得 _=100 2_-50=2 100-50=150 答:第一铁桥长 100 米,第二铁桥长 150
31、米 29 设甲的速度为 _ 千米 / 小时。那么 30 1 设通讯员 _ 分钟返回 .那么 _-90 2 设队长为 _ 米。那么 31 设两个城市之间的飞行路程为 _ 千米。那么 32 设甲、乙两码头之间的间隔 为 _ 千米。那么 。_=80 33. 分析p 由条件给出了百位和个位上的数的关系,假设设十位上的数为 _ ,那么百位上的数为 _+7 ,个位上的数是 3_ ,等量关系为三个数位上的数字和为 17 。解:设这个三位数十位上的数为 _ ,那么百位上的数为 _+7 ,个位上的数是 3_ _+_+7+3_=17 解得 _=2 _+7=9 , 3_=6 答:这个三位数是 926 34.等量关系:原两位数 +36= 对调后新两位数 解:设十位上的数字 _ ,那么个位上的数是 2_ , 10 2_+_= 10_+2_ +36 解得 _=4 , 2_=8 ,答:原来的两位数是 48 。第 14 页 共 14 页