《高中数学概念课型及其教学设计.doc》由会员分享,可在线阅读,更多相关《高中数学概念课型及其教学设计.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学概念课型及其教学设计高中数学概念课型及其教学设计谭国华【专题名称】高中数学教与学【专题号】G312【复印期号】20_年02期【原文出处】中学数学研究(广州)20_年6上期第48页【作者简介】谭国华,广州市教育局教研室(510030). 在我国高中数学教学中,有按课型特点设计和组织教学的传统.但是,对于如何划分课型以及如何认识每一类课的一般结构特点等问题,一直以来都未得到很好的解决.究其原因,主要是我们过去对高中数学课型的研究基本上是依据广大教师的教学实践经验,对课型结构特点的归纳总结,或者只是泛泛而谈,提出一些基本原则,缺乏可操作性;或者因人而异,不同人的观点有很大的不同.因此,原有的
2、课型理论对课堂教学的指导作用有限. 在过去,由于受教育心理学特别是教学心理学发展所限,要想用心理学的研究成果来指导中小学课堂教学的研究也是心有余而力不足,更别说是用来指导课型的研究.但现在的情况大不相同了.从1980年代以来,教育心理学与中小学课堂教学的关系越来越紧密,对中小学课堂教学的指导作用越来越直接而有力.近几年,我们借助教育心理学的研究成果,特别是学习心理学和教学心理学的研究成果指导课型的研究,取得较为可喜的成效.具体做法是,一方面使高中数学课型的理论保持我国传统课型理论中课型的整体性与综合性特点,以方便操作;同时,融入现代学习理论关于学习分类的观点,对每一种课型中涉及的主要知识的类型
3、及其学习的过程、有效学习的条件进行深入的分析,以此为高中数学教学设计奠定坚实的科学基础.本文仅对有关高中数学概念课型及其教学设计的研究成果作简要介绍. 一、高中数学概念课型的基本特点我国传统的课型概念有两种含义:一是指课的类型,它是按某种分类基准(或方法)对各种课进行分类的基础上产生的.例如,中国大百科全书。教育卷(1985年版)中关于课的类型,是指根据不同的教学任务或按一节课主要采用的教学方法来划分课的类别.二是指课的模型,它是在对各种类型的课在教学观、教学策略、教材、教法等方面的共同特征进行抽象、概括的基础上形成的模型、模式.在这种意义下,课型可以看作是微观的课堂教学模式. 本文所指的课型
4、主要是指课的类型,是根据一节课(有时是连续的两节或三节课)承担的主要教学任务来划分的,但是同时它也兼具课的模型的含义. 这是因为根据教学心理学的有关理论,不同的教学任务分属不同的知识类型,而不同类型知识的学习过程与学习所需的内、外部条件是不同的,这就导致了不同的课堂教学结构.具有某种特点的课堂教学结构实际上就是微观的课堂教学模式,也即是课的模型. 在高中数学教学中,数学概念可以划分为原始概念和定义性概念.原始概念一般是通过对一系列的例证直接观察和归纳而习得,这类概念一般不需单独设课讲授,只需结合其他概念或规则的学习附带进行即可习得.而定义性概念中的那些次要的和易学的数学概念往往也不单独设课讲授
5、.但是,在高中数学概念中,有许多重要的定义性概念往往是要单独设课讲授的,这一类课是具有共同的课堂教学结构特点的,于是,我们将这一类需要单独设课讲授的、重要的定义性概念课统称为高中数学概念课型. 1.教学任务分析高中数学概念课型的主要教学任务是使学生掌握概念所反映的一类事物的共同本质属性,以及运用概念去办事,去解决问题.因此,高中数学概念学习主要应作为程序性知识学习. 根据学习心理学关于定义性概念的学习过程与条件的分析,高中数学概念教学有三项内容:一是要明确数学概念是什么,也就是要帮助学生习得概念,这将涉及前面提到的四个方面即概念的名称、定义、属性和例证的分析;二是要运用概念去办事,即将习得的数
6、学概念运用到各种具体情境中去解决相应的问题;三是要辨明相关概念间的关系,形成概念系统.其中前两项内容完全属于高中数学概念课型的教学任务,第三项内容中一般只有部分内容属于概念课型的教学任务,形成完整的概念系统则属于高中数学复习课型的教学任务,我们将在复习课型中进行讨论. 2.学与教的过程和条件高中数学概念学与教的一般过程可以以我国教育心理学家皮连生创立的“六步三段两分支”教学模型为线索进行分析.(具体内容请参见参考文献1)第一阶段:习得阶段主要教学任务是帮助学生习得数学概念,明确数学概念是什么,重点是促进学生对所学数学概念的理解.教学中,帮助学生习得数学概念一般需要做好下面四件事情. 首先,揭示
7、概念所反映的一类事物的本质属性,给概念下定义. 其次,辨别概念的正例和反例,并结合定义给予恰当的说明. 再次,用不同的语言形式对概念加以解释,如将概念的定义由文字语言表述转换为用符号语言或图形语言表述. 最后,对概念做深入分析,着重在以下四点:辨明所学数学概念与原有相关数学概念之间的关系; 分析所学数学概念的其他一些重要属性或特征; 分析所学数学概念及其形成过程中蕴含的数学思想方法; 分析所学数学概念及其形成过程中蕴含的情感教育内容. 当然,并非每一个数学概念的教学都要完成所有这些事情.对于一些简单的、次要的数学概念,有时只需完成前三件事情就可以了. 习得概念的基本形式有两种:一种叫概念形成,
8、另一种叫概念同化. 概念形成这是一种从辨别概念的例证出发,逐渐归纳概括出概念的本质属性的学习方式,其心理机制可用奥苏贝尔的上位学习模式来解释.(具体内容见参考文献1)学与教的基本过程:知觉辨别(提供概念的正例,引导学生分析概念例证的特征)提出假设(对概念例证的共同本质特征作出假设)检验假设,使假设精确化概括(给概念下定义)辨别概念的正例、反例(正例应有助于证实概念的本质属性,反例应有助于剔除概念的非本质属性)用不同的语言形式对概念加以解释对概念做深入分析(分析与相关数学概念之间的关系,揭示概念的其他一些重要属性或特征). 学习的内部条件(即学生自身应具备的条件):学生必须能够辨别正、反例证.
9、学习的外部条件(即教学应提供的条件):第一,必须为学生提供概念的正、反例,正例应有两个或两个以上,正例的无关特征应有变化,以帮助学生更好地辨别概念的本质属性和非本质属性;正例应连续呈现,最好能同时让学生意识到,以帮助学生形成概括. 第二,学生必须能从外界获得反馈信息,以检验其所做的假设是否正确. 第三,提供适当的练习,并给予矫正性反馈. 采用概念形成的学习方式涉及如何给概念下定义的问题.明确概念的定义方式,对于教师更好地分析概念以及促进学生形成概括是有帮助的.在高中数学中,对于一些重要的数学概念大多数采用属加种差的定义方式.这里的属是指属概念,种是指种概念.属概念和种概念是指具有包含关系的两个
10、概念,即如果概念A的外延真包含概念B的外延,则称概念A为概念B的属概念,而概念B即为概念A的种概念.通常,也称概念A为概念B的上位概念,而概念B即为概念A的下位概念.可用公式表示:被定义概念=种差+最邻近的属概念. 公式中,最邻近的属概念是指在被定义概念的所有上位概念中外延最小的上位概念(属概念),种差就是被定义概念在它的最邻近的属概念里区别于其他种概念的那些本质属性. 例如,一元二次不等式的定义是:只含有一个未知数且未知数的最高次数是2的不等式叫做一元二次不等式.这个定义中,被定义概念是一元二次不等式;最邻近的属概念是不等式;种差是“只含有一个未知数且未知数的最高次数是2”,这是一元二次不等
11、式独有的而且能够将一元二次不等式与其他不等式区别开来的本质属性. 概念同化概念同化是通过直接下定义来揭示一类事物的共同本质属性,从而习得概念的一种学习方式,其心理机制可用奥苏伯尔的下位学习模式来解释. 学与教的基本过程:呈现概念的定义分析定义,包括揭示概念的本质属性和构成定义的各部分的关系辨别概念的正例、反例(正例应有助于证实概念的本质属性,反例应有助于剔除概念的非本质属性)用不同的语言形式对概念加以解释对概念做深入分析(分析与相关数学概念之间的关系,揭示概念的其他一些重要属性或特征). 学习的内部条件:学生的原有认知结构中应具有同化新概念的适当的上位概念(或结构),而且这一上位概念(或结构)
12、越巩固、越清晰就越有利于同化新的下位概念. 学习的外部条件:第一,言语指导,以帮助学生更好地理解概念的本质属性. 第二,提供符合概念定义的正例和不符合概念定义的反例. 第三,提供适当的练习,并给以矫正性反馈. 第二阶段:转化阶段第一阶段习得的概念仍属于概念的陈述性形式.若要运用概念对外办事,则还需将它转化为程序性形式,也就是转化为办事的技能.这是本阶段的主要教学任务,重点是要明确运用概念办事的情境和程序,并在一些典型的情境中尝试运用概念.转化的关键条件是要提供变式练习. 运用数学概念办事大致可分两种情况:一种是为数学概念自己办事,解决与数学概念本身有关的问题;另一种是运用概念的本质属性和一些重
13、要的非本质属性去解决有关数学运算、推理、证明问题以及解决实际问题.例如,函数概念的运用,一种是为函数自己办事,如求函数的解析式、函数值、定义域、值域,作函数的图象,判定函数的单调性和奇偶性,求函数的最值等;另一种是运用函数的概念、图象、性质等解决与方程、数列、不等式等相关问题,或建立函数模型解决实际问题.函数概念教学及变式练习的重点就在于熟练掌握每一种情境中办事的程序和步骤. 第三阶段:迁移与应用阶段这是第二阶段的延伸.通过变式练习,学生已能在一些典型的情境中运用概念,已初步形成运用概念对外办事的技能.本阶段是要进一步提供概念应用的新情境,以促进迁移,其关键条件是提供综合练习.综合练习中问题的
14、类型或情境应多样化,和第二阶段相比有类似的,也有新的呈现,以有效地帮助学生在不同情境中独立运用概念解决问题.这一阶段既可在课内完成,也可在课外完成,但通常都要反复多次才能完成. 3.高中数学概念课教学的基本程序根据上面的分析,结合广义知识学与教的“六步三段两分支”教学模型,我们可以将高中数学概念课型教学的基本程序简要归纳为:第一阶段:习得阶段(习得数学概念)(1)引起注意与告知目标,使学生对学习新概念产生一定的预期,从而激发学生的学习动机. (2)提示学生回忆原有知识,以便为同化新概念做好准备. (3)引入概念,使学生初步感知概念的本质属性.这里,既要从学生接触过的具体内容引入,也要注意从数学
15、内部提出问题. (4)采用概念形成或概念同化的形式帮助学生习得概念的陈述性形式,即理解概念. 第二阶段:转化阶段(将习得的概念转化为办事的技能)(5)通过变式练习促进学生将习得的陈述性形式的概念转化为程序性形式,即转化为办事的技能. 第三阶段:迁移与应用阶段(运用概念对外办事)(6)通过课外作业、复习、间隔练习和在后续课程内容中应用概念等多种形式,为学生提供概念应用的情境,促进保持与迁移. 根据高中数学教学的特点,第一、二两个阶段的5步通常是在课内完成.第三阶段即第6步为概念的巩固、迁移和应用阶段,通常是在课外和后续的课程中完成. 对于以学案自学为主的教学则需考察其学案编写以及教师课堂上提供的
16、帮助是否有助于学生完成学习的三个阶段. 二、高中数学概念课型教学设计举例下面以对数函数及其性质(具体内容见参考文献2第2.2.2节)的教学过程分析为例,具体说明高中数学概念课型的教学设计过程. 1.教学任务分析本节教材有两项学习内容:(1)对数函数的概念; (2)反函数的概念. 第(1)项内容属于定义性概念学习,需达到掌握水平.对对数函数概念的学习需采用数形结合方法从数和形两个方面展开. 第(2)项内容也属于定义性概念学习.高中数学课程标准对反函数的学习要求已经降低.本课学习反函数的概念,主要为了帮助学生明确对数函数和指数函数间的关系,从而深化对数函数概念的理解.因此,本节教材主要是对数函数概
17、念的学习,反函数概念的学习只需达到了解水平即可. 本节教材的主要教学任务是对数函数概念的教学,属于概念课型,需按高中数学概念课的课型特点来设计整个教学过程.具体教学要做到三点:第一,要帮助学生明确对数函数概念是什么,包括四个方面:对数函数的定义、名称、例证和属性.根据函数的特点,对对数函数属性的讨论应包括形和数两个方面. 第二,要运用对数函数概念去办事,教材主要要求能解决三方面问题:求对数型函数的定义域,比较两个对数值的大小,解决简单的实际问题. 第三,要明确对数函数与指数函数及函数的关系.其中,辨明对数函数概念与指数函数概念的关系需要先介绍反函数概念. 本节教材一般应安排2课时.第1课时学习
18、对数函数的概念、图象与性质.第2课时学习运用对数函数解决简单的两数大小比较、运用对数函数模型解决简单实际问题和反函数概念.为了帮助学生形成运用对数函数概念去办事的能力,需要补充适量的变式练习题. 2.教学的基本过程第一阶段:习得阶段.习得对数函数的概念. 第一步引起注意与告知目标. 通过本课的学习,学生应能做到:(1)初步掌握对数函数的概念.包括:能陈述对数函数的定义,并能列举正例、反例加以说明; 能用描点法画出具体对数函数的图象,并能用自己的话描述一般对数函数的图象特征和基本性质; 能根据对数函数的单调性比较两个对数值的大小. (2)了解反函数的概念,进一步明确对数函数和指数函数之间的关系.
19、 (3)通过对实际问题的分析,能初步认识到对数函数模型与现实生活以及与其他学科的密切联系和应用价值,提高数学应用的意识. 第二步复习原有知识. 对本课学习影响较大的原有知识,一是函数概念和指数函数概念,二是描点法画函数的图象.对数函数的定义是属加种差的定义方式,函数是其上位概念,也是其最邻近的属概念.因此,在学习新课之前,应帮助学生回忆函数和指数函数的定义,以及函数图象的画法. 第三步采用概念同化方式习得对数函数的定义. 习得对数函数的定义可以采用概念形成的方式,也可以采用概念同化的方式.如采用概念形成方式则需列举两至三个正例.我们这里是采用概念同化方式. (1)引入概念教材提供了一个引例:通
20、过碳14的含量测量出土文物的年代.这个引例能起两方面的作用:一是使学生初步感知对数函数的概念;二是使学生认识对数函数的应用价值,激发学生的学习动机.教师应引导学生观察教材中给出的t和P的取值的对应表,体会“对每一个碳14的含量P的取值,通过对应关系,都有唯一的生物死亡年数t与之对应”,从而说明t是P 的函数. (2)呈现并分析定义根据对数函数的定义方式,分析时要讲清两点:一是最邻近的属概念,二是种差.在对数函数的定义中,最邻近的属概念是函数,函数与对数函数构成了上下位关系,即对数函数是一种函数;种差是指两个变量间的对应关系为(a0,且a1),种差也就是对数函数区别于其他函数的本质属性,即对数函
21、数是一类特殊的函数. 分析定义的目的是为了帮助学生形成对定义的深入理解.教师可以提出一些问题供学生思考.例如:定义中为什么要规定a0,且a1?为什么对数函数(a0,且a1)的定义域是(0,+)?(3)列举正例与反例通过列举正例、反例,帮助学生进一步加深对概念的理解. 第四步采用概念形成方式习得对数函数的图象与性质. 对各种不同的函数的概念学习都包括数和形两个方面,画函数图象既是为了获得函数的性质,也是为了从形的方面更好地理解函数概念.将图象上观察到的共同特征用代数语言表达出来,就得到一类函数的性质.这一过程体现了数形结合的基本思想. (1)在同一坐标系内采用描点法画出对数函数的图象应分0a1和
22、a1两种情况,每种情况至少举两个对数函数的例子,在同一坐标系内采用描点法画出它们的图象.有的教师在教学时,每种情况都只举一例,这是不能形成对共有的关键特征的概括的.有的教师说教材也只举一例,这是不对的.教材中有一段话:“选取底数a(a0,且a1)的若干个不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现它们有哪些共同特征吗?”教学时应落实教材的这个意图. (2)通过观察图象的特征,概括出一般对数函数的性质观察和分析图象,归纳它们的共同特征和性质,并由此概括出一般对数函数的图象特征和性质. 第二阶段:转化阶段.将习得的对数函数概念转化为办事的技能. 第五步样例学习和变式
23、练习这一步主要任务是帮助学生学会如何运用概念去办事,其核心是掌握运用的方法与步骤.根据教材的要求,分为三种情况. (1)运用对数函数定义解决求对数型函数的定义域问题教材中提供了两个例题,均属于对数型的函数. 教学中应结合这两个例题分析对数型函数与对数函数的异同,以及总结求这类函数定义域的基本方法. 例1求函数(a0,且a1)的定义域. 通过样例学习后让学生小结求对数型函数的定义域的步骤,并进行变式练习.如求下列函数的定义域:(2)运用对数函数性质解决比较两个对数值大小的问题教材中提供了三个例题,三个例题分属三种类型.教学中应结合这三个例题,总结运用对数函数的单调性比较两个对数值的大小的基本方法
24、.同样,先学习样例,然后再进行变式练习. 例2比较下列两个值大小:在学习例2时,教师可以提出一些问题引发学生的思考.如本题的第、小题都可以直接使用计算器计算,然后比较大小.但第小题则不行.有没有其他统一的方法解决这一类型的问题呢?这种统一的方法实际上就是:利用数形结合,画出图象,再利用函数的单调性则可以比较大小. 利用函数的单调性比较大小,将设及构造函数. 那么如何构造函数呢?三个小题中的底数不变,真数变化,则可以构造函数:教师引导学生小结:根据对数函数的单调性比较两个对数值的大小的步骤为:第1步:依据对数的特点构造对数函数; 第2步:判断函数单调性,有时需要分类讨论; 第3步:利用单调性比较
25、大小,下结论. (3)运用对数函数模型解决简单实际问题教材提供了一个溶液酸碱度测量问题.通过这一例题,不仅要使学生初步掌握运用对数函数模型解决简单实际问题的方法,而且要帮助学生初步认识到对数函数模型与现实生活以及与其他学科的密切联系,同时,教师还可通过对“对数函数模型”的应用(如航天技术、考古学、生物学等领域)的大致介绍,使学生进一步体会到对数函数模型的应用价值,提高数学应用意识.数学应用意识属于学习分类中的态度学习,亦即数学中情感态度价值观的学习. 第六步习得反函数概念对反函数概念只需达到了解水平,知道指数函数与对数函数是互为反函数即可.具体教学中,可以请学生先阅读教材中的有关内容,然后思考
26、以下问题:我们知道表示y是_的函数,由可以得到,教材上说_也是y的函数,请尝试用自己的话说明理由. 教材上说和y=都表示函数的反函数,这是何原因?请用自己的话说明指数函数(a0,且a1)与对数函数y=(a0,且a1)是互为反函数. 第三阶段:迁移与应用阶段.运用对数函数概念对外办事. 第七步提供技能应用的情境(相似的和不同的情境),促进迁移. 提供课外作业以及在后续课程中提供运用对数函数概念办事的机会.【参考文献】1皮连生.学与教的心理学(第五版)M.上海:华东师范大学出版社.2021. 2刘绍学主编.普通高中课程标准实验教科书数学必修1(A 版)M.北京:人民教育出版社,20_7.第 10 页 共 10 页