2010年高考试题——数学文(安徽卷)含答案)(含解析).docx

上传人:wo****o 文档编号:80318059 上传时间:2023-03-22 格式:DOCX 页数:17 大小:588.18KB
返回 下载 相关 举报
2010年高考试题——数学文(安徽卷)含答案)(含解析).docx_第1页
第1页 / 共17页
2010年高考试题——数学文(安徽卷)含答案)(含解析).docx_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2010年高考试题——数学文(安徽卷)含答案)(含解析).docx》由会员分享,可在线阅读,更多相关《2010年高考试题——数学文(安徽卷)含答案)(含解析).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、绝密启用前2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科) 本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1至第2页,第卷第3至第4页。全卷满分l50分,考试时间l20分钟。考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。2.答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。3.答第卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、

2、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。4.考试结束,务必将试题卷和答题卡一并上交。参考公式: S表示底面积,h表示底面上的高如果事件A与B互斥,那么 棱柱体积V=Sh P(A+B)=P(A)+P(B) 棱锥体积V=第卷(选择题 共50分)一选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中只有一项是符合题目要求的(1)若A=,B=,则= (A)(-1,+) (B)(-,3) (C)(-1,3) (D)(1,3)1.C【解析】,故选C

3、.【方法总结】先求集合A、B,然后求交集,可以直接得结论,也可以借助数轴得交集.(2)已知,则i()= (A) (B) (C) (D)2.B【解析】,选B.【方法总结】直接乘开,用代换即可.(3)设向量,则下列结论中正确的是(A) (B)(C) (D)与垂直3.D【解析】,所以与垂直.【规律总结】根据向量是坐标运算,直接代入求解,判断即可得出结论.(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=04.A【解析】设直线方程为,又经过,故,所求方程为.【方法技巧】因为所求直线与与直线x-2y-2

4、=0平行,所以设平行直线系方程为,代入此直线所过的点的坐标,得参数值,进而得直线方程.也可以用验证法,判断四个选项中方程哪一个过点(1,0)且与直线x-2y-2=0平行.(5)设数列的前n项和,则的值为(A) 15 (B) 16 (C) 49 (D)645.A【解析】.【方法技巧】直接根据即可得出结论.(6)设,二次函数的图像可能是6.D【解析】当时,、同号,(C)(D)两图中,故,选项(D)符合【方法技巧】根据二次函数图像开口向上或向下,分或两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.(7)设,则a,b,c的大小关系是(A)acb (

5、B)abc (C)cab (D)bca7.A【解析】在时是增函数,所以,在时是减函数,所以。【方法总结】根据幂函数与指数函数的单调性直接可以判断出来.(8)设x,y满足约束条件则目标函数z=x+y的最大值是(A)3 (B) 4 (C) 6 (D)88.C【解析】不等式表示的区域是一个三角形,3个顶点是,目标函数在取最大值6。【规律总结】线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则区域端点的值是目标函数取得最大或最小值,求出直线交点坐标代入目标函数即可求出最大值.(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (B)360 (C)292 (D)2809.B【解

6、析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。.【方法技巧】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A) (A) (A) (A)10.C【解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件。两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件

7、,所以概率等于.【方法技巧】对于几何中的概率问题,关键是正确作出几何图形,分类得出基本事件数,然后得所求事件保护的基本事件数,进而利用概率公式求概率.第卷(非选择题共100分)二填空题:本大题共5小题,每小题5分,共25分把答案填在答题卡的相应位置(11)命题“存在,使得”的否定是 11.对任意,都有.【解析】特称命题的否定时全称命题,“存在”对应“任意”.【误区警示】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“”的否定用“”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.(12)抛物线的焦点坐标是 12.【解析】抛物线,所以,所以焦点.【误区警示

8、】本题考查抛物线的交点.部分学生因不会求,或求出后,误认为焦点,还有没有弄清楚焦点位置,从而得出错误结论.(13)如图所示,程序框图(算法流程图)的输出值x= 13.12【解析】程序运行如下:,输出12。【规律总结】这类问题,通常由开始一步一步运行,根据判断条件,要么几步后就会输出结果,要么就会出现规律,如周期性,等差或等比数列型.(14)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户依

9、据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .14.【解析】该地拥有3套或3套以上住房的家庭可以估计有:户,所以所占比例的合理估计是.【方法总结】本题分层抽样问题,首先根据拥有3套或3套以上住房的家庭所占的比例,得出100 000户,居民中拥有3套或3套以上住房的户数,它除以100 000得到的值,为该地拥有3套或3套以上住房的家庭所占比例的合理估计.(15)若,则下列不等式对一切满足条件的恒成立的是 (写出所有正确命题的编号); ; ; ; 15.,【解析】令,排除;由,命题正确;,命题正确;,命题正确。【方法总结】三、解答题:本大题共6小题

10、共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内。16、(本小题满分12分) 的面积是30,内角所对边长分别为,。 ()求;()若,求的值。16.【命题意图】本题考查同角三角函数的基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.【解题指导】(1)根据同角三角函数关系,由得的值,再根据面积公式得;直接求数量积.由余弦定理,代入已知条件,及求a的值.解:由,得.又,.().(),.【规律总结】根据本题所给的条件及所要求的结论可知,需求的值,考虑已知的面积是30,所以先求的值,然后根据三角形面积公式得的值.第二问中求a的值,根据第一问中的结论可

11、知,直接利用余弦定理即可.17、(本小题满分12分)椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率。 ()求椭圆的方程;()求的角平分线所在直线的方程。17.【命题意图】本题考查椭圆的定义及标准方程,椭圆的简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识;考查解析几何的基本思想、综合运算能力.【解题指导】(1)设椭圆方程为,把点代入椭圆方程,把离心率用表示,再根据,求出,得椭圆方程;(2)可以设直线l上任一点坐标为,根据角平分线上的点到角两边距离相等得.解:()设椭圆E的方程为【规律总结】对于椭圆解答题,一般都是设椭圆方程为,根据题目满足的条件求出,得椭圆方程,这一问通常

12、比较简单;(2)对于角平分线问题,利用角平分线的几何意义,即角平分线上的点到角两边距离相等得方程.18、(本小题满分13分) 某市2010年4月1日4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45,() 完成频率分布表;()作出频率分布直方图;()根据国家标准,污染指数在050之间时,空气质量为优:在51100之间时,为良;在101150之间时,为轻微污染;在151200之间时,为轻度污染。

13、请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.18.【命题意图】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识. 【解题指导】(1)首先根据题目中的数据完成频率分布表,作出频率分布直方图,根据污染指数,确定空气质量为优、良、轻微污染、轻度污染的天数。()答对下述两条中的一条即可:(1) 该市一个月中空气污染指数有2天处于优的水平,占当月天数的,有26天处于良的水平,占当月天数的,处于优或良的天数共有28天,占当月天数的。说明该市空气质量基本良好。(2) 轻微污染有2天,占当月天数的。污染指数在80以上的接近轻微污染的天数有15

14、天,加上处于轻微污染的天数,共有17天,占当月天数的,超过50%,说明该市空气质量有待进一步改善。【规律总结】在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的高等于每一组的频率/组距,它们与频数成正比,小矩形的面积等于这一组的频率.对于开放性问题的回答,要选择适当的数据特征进行考察,根据数据特征分析得出实际问题的结论.19.(本小题满分13分)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EFAB,EFFB,BFC=90,BF=FC,H为BC的中点,()求证:FH平面EDB;()求证:AC平面

15、EDB; ()求四面体BDEF的体积;19.【命题意图】本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查体积的计算等基础知识,同时考查空间想象能力、推理论证能力和运算能力.【解题指导】(1)设底面对角线交点为G,则可以通过证明EGFH,得平面;(2)利用线线、线面的平行与垂直关系,证明FH平面ABCD,得FHBC,FHAC,进而得EGAC,平面;(3)证明BF平面CDEF,得BF为四面体B-DEF的高,进而求体积.【规律总结】本题是典型的空间几何问题,图形不是规则的空间几何体,所求的结论是线面平行与垂直以及体积,考查平行关系的判断与性质.解决这类问题,通常利用线线平行证明线面平行,利

16、用线线垂直证明线面垂直,通过求高和底面积求四面体体积. 20.(本小题满分12分)设函数,求函数的单调区间与极值。20.【命题意图】本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合应用数学知识解决问题的能力.【解题指导】(1)对函数求导,对导函数用辅助角公式变形,利用导数等于0得极值点,通过列表的方法考查极值点的两侧导数的正负,判断区间的单调性,求极值.【思维总结】对于函数解答题,一般情况下都是利用导数来研究单调性或极值,利用导数为0得可能的极值点,通过列表得每个区间导数的正负判断函数的单调性,进而得出极值点.(21)(本小题满分13分)设是坐标平面上的一列圆,它们的圆心都在

17、轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.()证明:为等比数列;()设,求数列的前项和. 21.【命题意图】本题考查等比列的基本知识,利用错位相减法求和等基本方法,考察抽象概括能力以及推理论证能力.【解题指导】(1)求直线倾斜角的正弦,设的圆心为,得,同理得,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即中与的关系,证明为等比数列;(2)利用(1)的结论求的通项公式,代入数列,然后用错位相减法求和.【方法技巧】对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项与之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.对于数列求和问题,若数列的通项公式由等差与等比数列的积构成的数列时,通常是利用前n项和乘以公比,然后错位相减解决.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 升学试题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁