《浅析桥梁工程中混凝土裂缝产生的原因.docx》由会员分享,可在线阅读,更多相关《浅析桥梁工程中混凝土裂缝产生的原因.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、浅析桥梁工程中混凝土裂缝产生的原因下面是建筑网给大家带来关于桥梁工程中混凝土裂缝产生的原因的相关内容,以供参考。为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文分析了桥梁结构中混凝土裂缝的种类和产生原因,以方便设计、施工找出控制裂缝的可行办法,达到防范于未然的作用。混凝土桥梁因其取材广泛、价格低廉、抗压强度高、可浇筑成各种形状,并且耐火性好、不易老化、养护费用低,成为当今世界桥梁结构中使用最广泛的建筑材料。然近年来,因出现裂缝而影响工程质量甚至导桥梁垮塌的报道屡见不鲜。为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文尽可能地对混凝土桥梁裂
2、缝的种类和产生原因作较全面的分析。1荷载引起的裂缝荷载裂缝是指混凝土桥梁在常规静、动荷载及次应力下产生的裂缝,主要有直接应力裂缝、次应力裂缝两种。1.1由外荷载引起的直接应力产生的裂缝被称为直接应力裂缝,其产生原因:1.1.1设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。1.1.2施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。1.1.3使用阶段,超出设计载荷
3、的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。1.2由外荷载引起的次生应力产生裂缝被称为次应力裂缝,其产生原因:1.2.1在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。1.2.2桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。2温度变化引起的裂缝混凝土具有热胀冷缩的性质,当外部环境或结构内部温度发生变化时,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力
4、超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化的主要因素有年温差、日照、骤然降温、水化热、蒸汽养护或冬季施工时施工措施不当等。日照和下述骤然降温是导致结构温度裂缝的最常见原因。3收缩引起的裂缝在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。3.1塑性收缩。发生在施工过程中、混凝土浇筑后45小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,
5、同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。3.2缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。3.3自生收缩。自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐
6、水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。3.4炭化收缩。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。4地基础变形引起的裂缝由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:4.1地质勘察精度不够、试验资料不准。4.2地基地质差异太大。建造在山区沟谷的桥梁,河沟处的地质与山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。4.3结构荷载差异太大。4.4结构基础类型差别大。同一联桥
7、梁中,混合使用不同基础如扩大基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。4.5分期建造的基础。4.6地基冻胀。在低于零度的条件下含水率较高的地基土因冰冻膨胀;一旦温度回升,冻土融化,地基下沉。因此地基的冰冻或融化均可造成不均匀沉降。4.7桥梁基础置于滑坡体、溶洞或活动断层等不良地质时,可能造成不均匀沉降。4.8桥梁建成以后,原有地基条件变化。5施工材料质量引起的裂缝混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。5.1水泥5.1.1水泥安定性不合格,水泥中游离的氧化钙含
8、量超标。氧化钙在凝结过程中水化很慢,在水泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。5.1.2水泥出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。5.1.3当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。5.2砂、石骨料砂石粒径太小、级配不良、空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。砂石中含泥量高,不仅将造成水泥和拌和水用量加大,而且还降低混凝土强度和抗冻性、抗渗
9、性。砂石中有机质和轻物质过多,将延缓水泥的硬化过程,降低混凝土强度,特别是早期强度。5.3拌和水及外加剂拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。6施工工艺质量引起的裂缝在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:6.1混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝;6.2
10、混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。6.3混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,会出现不规则的收缩裂缝;混凝土浇筑过快,流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,既塑性收缩裂缝。6.4混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。6.5用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。6.6混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。7结束语综上所述,设计疏漏、施工低劣、监理不力均可能使混凝土桥梁出现裂缝。只要我们在设计、施工工艺、材料选择以及后期的养护过程中能够充分考虑的各种因素的影响,还是完全可以避免危害结构的裂缝的产生。