《高中数学必修五知识点归纳5篇分享.docx》由会员分享,可在线阅读,更多相关《高中数学必修五知识点归纳5篇分享.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学必修五知识点归纳5篇分享 高一新生要作好充分思想打算,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校内环境、适应与初中迥异的纪律制度。记住:是你主动地适应环境,而不是环境适应你。下面是我给大家带来的高一数学必修五学问点,欢迎大家阅读! 中学数学必修五学问点归纳1 1.“包含”关系子集 留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系(55,且55,则5=5) 实例:设A=_2-1=0B=-1,1“元素相同” 结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时
2、,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。AA 真子集:假如AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) 假如AB,BC,那么AC 假如AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集 中学数学必修五学问点归纳2 1.一些基本概念: (1)向量:既有大小,又有方向的量. (2)数量:只有大小,没有方向的量. (3)有向线段的三要素:起点、方向、长度. (4)零向量:长度为0的向量. (5)单位向量:长度等于1个单位的向量. (6)平行向量(共线向
3、量):方向相同或相反的非零向量. 零向量与任一向量平行. (7)相等向量:长度相等且方向相同的向量. 2.向量加法运算: 三角形法则的特点:首尾相连. 平行四边形法则的特点:共起点 中学数学必修五学问点归纳3 一、集合(jihe)有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个
4、元素。 (3)集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 记作aA,相反,a不属于集合A记作aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 语言描述法:例:不是直角三角形的三角形 数学式子描述法:例:不等式x-3>2的解集是xR|x-3>2或x|x-3
5、>2 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:x|x2=-5二、集合间的基本关系1.“包含”关系子集留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(55,且55,则5=5)实例:设A=x|x2-1=0B=-1,1“元素相同” 结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。AA 真子集:假如A
6、B,且AB那就说集合A是集合B的真子集,记作AB(或BA) 假如AB,BC,那么AC 假如AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由全部属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作AB(读作”A交B”),即AB=x|xA,且xB. 2、并集的定义:一般地,由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作”A并B”),即AB=x|xA,或xB. 3、交集与并集的性质:AA=A,A=,AB=BA,AA=A, A=A,AB=BA. 4
7、、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA=x|xS且xA (2)全集:假如集合S含有我们所要探讨的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:CU(CUA)=A(CUA)A=(CUA)A=U 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范
8、围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域. 留意:2假如只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必需大于零;(4)指数、对数式的底必需大于零且不等于1.(5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(
9、6)指数为零底不行以等于零(6)实际问题中的函数的定义域还要保证明际问题有意义. (又留意:求出不等式组的解集即为函数的定义域。) 2.构成函数的三要素:定义域、对应关系和值域 再留意: (1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系确定的,所以,假如两个函数的定义域和对应关系完全一样,即称这两个函数相等(或为同一函数) (2)两个函数相等当且仅当它们的定义域和对应关系完全一样,而与表示自变量和函数值的字母无关。相同函数的推断方法: 表达式相同; 定义域一样(两点必需同时具备) 中学数学必修五学问点归纳4 考点一、映射的概念 1.了解对应大千世界的对应共分四类,分
10、别是:一对一多对一一对多多对多 2.映射:设A和B是两个非空集合,假如根据某种对应关系f,对于集合A中的随意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:AB为集合A到集合B的一个映射(mapping).映射是特别的对应,简称“对一”的对应。包括:一对一多对一 考点二、函数的概念 1.函数:设A和B是两个非空的数集,假如根据某种确定的对应关系f,对于集合A中的随意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:AB为集合A到集合B的一个函数。记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做
11、函数的值域。函数是特别的映射,是非空数集A到非空数集B的映射。 2.函数的三要素:定义域、值域、对应关系。这是推断两个函数是否为同一函数的依据。 3.区间的概念:设a,bR,且a (a,b)=xa (a,+)=_>aa,+)=_a(-,b)=_ 考点三、函数的表示方法 1.函数的三种表示方法列表法图象法解析法 2.分段函数:定义域的不同部分,有不同的对应法则的函数。留意两点:分段函数是一个函数,不要误认为是几个函数。分段函数的定义域是各段定义域的并集,值域是各段值域的并集。 考点四、求定义域的几种状况 若f(x)是整式,则函数的定义域是实数集R; 若f(x)是分式,则函数的定义域是使分母
12、不等于0的实数集; 若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; 若f(x)是对数函数,真数应大于零。 .因为零的零次幂没有意义,所以底数和指数不能同时为零。 若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; 若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题 中学数学必修五学问点归纳5 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性;2.元素的互异性;3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元
13、素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:如我校的篮球队员,太平洋大西洋印度洋北冰洋 1.用拉丁字母表示集合:A=我校的篮球队员B=12345 2.集合的表示方法:列举法与描述法。 留意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N或N+整数集Z有理数集Q实数集
14、R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a:A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 语言描述法:例:不是直角三角形的三角形 数学式子描述法:例:不等式x-3>2的解集是x?R|x-3>2或x|x-3>2 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:x|x2=-5 二、集合间的基
15、本关系 1.“包含”关系子集 留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA 2.“相等”关系(55,且55,则5=5) 实例:设A=x|x2-1=0B=-11“元素相同” 结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。A?A 真子集:假如A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA) 假如A?BB?C那么A?C 假如A?B同时B?A那么A=B 3.不含任何元素的集合叫做
16、空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由全部属于A且属于B的元素所组成的集合叫做AB的交集. 记作AB(读作”A交B”),即AB=x|xA,且xB. 2、并集的定义:一般地,由全部属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:AB(读作”A并B”),即AB=x|xA,或xB. 3、交集与并集的性质:AA=AA=AB=BA,AA=A A=AAB=BA. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA=x?x?S且x?A (2)全集:假如集合S含有我们所要探讨的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:CU(CUA)=A(CUA)A=(CUA)A=U 中学数学必修五学问点归纳5篇共享本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第14页 共14页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页