2012年上海高考数学真题(理科)试卷.docx

上传人:wo****o 文档编号:80173696 上传时间:2023-03-22 格式:DOCX 页数:14 大小:378.57KB
返回 下载 相关 举报
2012年上海高考数学真题(理科)试卷.docx_第1页
第1页 / 共14页
2012年上海高考数学真题(理科)试卷.docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2012年上海高考数学真题(理科)试卷.docx》由会员分享,可在线阅读,更多相关《2012年上海高考数学真题(理科)试卷.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、绝密启用前 2012年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(56分):1计算: (为虚数单位)。2若集合,则 。3函数的值域是 。4若是直线的一个法向量,则的倾斜角的大小为 (结果用反三角函数值表示)

2、。5在的二项展开式中,常数项等于 。6有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则 。 7已知函数(为常数)。若在区间上是增函数,则的取值范围是 。8若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 。9已知是奇函数,且,若,则 。10如图,在极坐标系中,过点的直线与极轴的夹角,若将的极坐标方程写成的形式,则 。11三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。12在平行四边形中,边、的长分别为2、1,若、分别是边、上的点,且满足,则的取值范围是 。13已知函数的图象是折线段,

3、其中、,函数()的图象与轴围成的图形的面积为 。14如图,与是四面体中互相垂直的棱,若,且,其中、为常数,则四面体的体积的最大值是 。来 二、选择题(20分):15若是关于的实系数方程的一个复数根,则( )A B C D16在中,若,则的形状是( )来 A锐角三角形 B直角三角形 C钝角三角形 D不能确定17设,随机变量取值的概率均为,随机变量取值的概率也均为,若记分别为的方差,则( )A B C D与的大小关系与的取值有关18设,在中,正数的个数是( )A25 B50 C75 D100三、解答题(74分):19(6+6=12分)如图,在四棱锥中,底面是矩形,来 底面,是的中点,已知,求: (

4、1)三角形的面积;(2)异面直线与所成的角的大小。20(6+8=14分)已知函数(1)若,求的取值范围;(2)若是以2为周期的偶函数,且当时,有,求函数()的反函数。 21(6+8=14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图现假设:失事船的移动路径可视为抛物线;定位后救援船即刻沿直线匀速前往救援;救援船出发小时后,失事船所在位置的横坐标为(1)当时,写出失事船所在位置的纵坐标若此时两船恰好会合,求救援船速度的大小和方向; (2)问救援船的时速至少是多少海里才能追上失

5、事船? 22(4+6+6=16分)在平面直角坐标系中,已知双曲线:(1)过的左顶点引的一条渐进线的平行线,求该直线与另一条渐进线及轴围成的三角形的面积;(2)设斜率为1的直线交于、两点,若与圆相切,求证:;(3)设椭圆:,若、分别是、上的动点,且,求证:到直线的距离是定值。 23(4+6+8=18分)对于数集,其中,定义向量集,若对任意,存在,使得,则称具有性质例如具有性质(1)若,且具有性质,求的值;(2)若具有性质,求证:,且当时,;(3)若具有性质,且、(为常数),求有穷数列的通项公式。2012上海高考数学试题(理科)答案与解析一填空题1计算: (为虚数单位).【答案】【解析】.【点评】

6、本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2若集合,则 .【答案】 【解析】根据集合A ,解得,由,所以.【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.3函数的值域是 .【答案】 【解析】根据题目,因为,所以.【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质. 4若是直线的一个法向量,则的倾斜角的大小为 (结果用反三角函数值表示).【答案】 【解析】设直线的倾斜角为

7、,则.【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小.5在的二项展开式中,常数项等于 .【答案】 【解析】根据所给二项式的构成,构成的常数项只有一项,就是 .【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.6有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则 .【答案】 【解析】由正方体的棱长组成以为首项,为公比的等比数列,可知它们的体积则组成了一个以1为首项,为公比的等比数列,因此, .【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项

8、公式、等比数列的定义.考查知识较综合.7已知函数(为常数).若在区间上是增函数,则的取值范围是 .【答案】【解析】根据函数看出当时函数增函数,而已知函数在区间上为增函数,所以的取值范围为: .【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 .【答案】【解析】根据该圆锥的底面圆的半径为,母线长为,根据条件得到,解得母线长,所以该圆锥的体积为:.【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题

9、意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.9已知是奇函数,且,若,则 .【答案】 【解析】因为函数为奇函数,所以 .【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数为奇函数,所以有这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.10如图,在极坐标系中,过点的直线与极轴的夹角,若将的极坐标方程写成的形式,则 .【答案】【解析】根据该直线过点,可以直接写出代数形式的方程为:,将此化成极坐标系下的参数方程即可 ,化简得.【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以

10、小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).【答案】【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为.【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12在平行四边形中,边、的长分别为2、1,若、分别是边、上的点,且满足,则的取值范围是 .【答案】【解析】以向量所在直线为轴,以向量

11、所在直线为轴建立平面直角坐标系,如图所示,因为,所以 设根据题意,有.所以,所以 【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13已知函数的图象是折线段,其中、,函数()的图象与轴围成的图形的面积为 .【答案】【解析】根据题意得到,从而得到所以围成的面积为,所以围成的图形的面积为 .【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.14

12、如图,与是四面体中互相垂直的棱,若,且,其中、为常数,则四面体的体积的最大值是 .【答案】 【解析】据题,也就是说,线段的长度是定值,因为棱与棱互相垂直,当时,此时有最大值,此时最大值为:.【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.二、选择题(20分)15若是关于的实系数方程的一个复数根,则( )A B C D【答案】 B 【解析】根据实系数方程的根的特点也是该方程的另一个根,所以,即,故答案选择B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算

13、,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.16在中,若,则的形状是( )A锐角三角形 B直角三角形 C钝角三角形 D不能确定 【答案】C【解析】由正弦定理,得代入得到,由余弦定理的推理得,所以C为钝角,所以该三角形为钝角三角形.故选择C【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.17设,随机变量取值的概率均为,随机变量取值的概率也均为,若记分别为的方差,则( )A B C D与的大小关系与的取值有关【答案】 A【解析】 由随机变量的取值情况

14、,它们的平均数分别为:, 且随机变量的概率都为,所以有. 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.18设,在中,正数的个数是( )A25 B50 C75 D100【答案】D解析 对于1k25,ak0(唯a25=0),所以Sk(1k25)都为正数. 当26k49时,令,则,画出ka终边如右, 其终边两两关于x轴对称,即有, 所以+0 xya2a12a13a24a23a26a27a49a48a38a37a+ =+ +,其中k=26,27,49,此时, 所以,又,所以, 从而当k=26,27,49时,Sk都是正数,S50=S4

15、9+a50=S49+0=S490. 对于k从51到100的情况同上可知Sk都是正数. 综上,可选D. 评注 本题中数列难于求和,可通过数列中项的正、负匹配来分析Sk的符号,为此,需借助分类讨论、数形结合、先局部再整体等数学思想.而重中之重,是看清楚角序列的终边的对称性,此为攻题之关键. 三、解答题(本大题共有5题,满分74分)19如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA底面ABCD,E是PC的中点.已知AB=2,AD=2,PA=2.求:(1)三角形PCD的面积;(6分)(2)异面直线BC与AE所成的角的大小.(6分)解(1)因为PA底面ABCD,所以PACD,又ADCD,所以CD

16、平面PAD, 从而CDPD. 3分ABCDPExyz 因为PD=,CD=2, 所以三角形PCD的面积为. 6分 (2)解法一如图所示,建立空间直角坐标系, 则B(2, 0, 0),C(2, 2,0),E(1, , 1), ,. 8分 设与的夹角为q,则 ,q=.ABCDPEF 由此可知,异面直线BC与AE所成的角的大小是 12分 解法二取PB中点F,连接EF、AF,则 EFBC,从而AEF(或其补角)是异面直线 BC与AE所成的角 8分 在中,由EF=、AF=、AE=2 知是等腰直角三角形, 所以AEF=. 因此异面直线BC与AE所成的角的大小是 12分【点评】本题主要考查直线与直线、直线与平

17、面的位置关系,考查空间想象能力和推理论证能力综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于必修2立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题20已知函数. (1)若,求的取值范围;(6分) (2)若是以2为周期的偶函数,且当时,有,求函数的反函数.(8分)解(1)由,得. 由得. 3分 因为,所以,. 由得. 6分 (2)当x1,2时,2-x0,1,因此. 10分由单调性可得.因为,所以所求反函数是,. 14分【点评】本题主要考查函数的概念、性质、分段函数等基础知识考查数形结合思想,熟练掌握指数函数

18、、对数函数、幂函数的图象与性质,属于中档题21海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴xOyPA正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A处,如图. 现假设:失事船的移动路径可视为抛物线;定位后救援船即刻沿直线匀速前往救援;救援船出发小时后,失事船所在位置的横坐标为. (1)当时,写出失事船所在位置P的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分) (2)问救援船的时速至少是多少海里才能追上失事船?(8分)解(1)时,P的横坐标xP=,代入抛物线方程 中,得P的纵坐标yP=3. 2分 由|AP|=,

19、得救援船速度的大小为海里/时. 4分 由tanOAP=,得OAP=arctan,故救援船速度的方向 为北偏东arctan弧度. 6分 (2)设救援船的时速为海里,经过小时追上失事船,此时位置为. 由,整理得.10分 因为,当且仅当=1时等号成立, 所以,即. 因此,救援船的时速至少是25海里才能追上失事船. 14分22在平面直角坐标系中,已知双曲线. (1)过的左顶点引的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(4分) (2)设斜率为1的直线l交于P、Q两点,若l与圆相切,求证:OPOQ;(6分) (3)设椭圆. 若M、N分别是、上的动点,且OMON,求证:O到直线

20、MN的距离是定值.(6分)解(1)双曲线,左顶点,渐近线方程:. 过点A与渐近线平行的直线方程为,即. 解方程组,得. 2分 所以所求三角形的面积1为. 4分 (2)设直线PQ的方程是.因直线与已知圆相切, 故,即. 6分 由,得. 设P(x1, y1)、Q(x2, y2),则. 又2,所以 ,故OPOQ. 10分 (3)当直线ON垂直于x轴时, |ON|=1,|OM|=,则O到直线MN的距离为. 当直线ON不垂直于x轴时, 设直线ON的方程为(显然),则直线OM的方程为. 由,得,所以.同理. 13分 设O到直线MN的距离为d,因为, 所以,即d=. 综上,O到直线MN的距离是定值. 16分

21、【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为,它的渐近线为,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 23对于数集,其中,定义向量集. 若对于任意,存在,使得,则称X具有性质P. 例如具有性质P. (1)若x2,且,求x的值;(4分) (2)若X具有性质P,求证:1X,且当xn1时,x1=1;(6分) (3)若X具有性质P,且x1=1,x2=q(q为常数),求有穷数列的通项公式.(8分)解(1)选取,Y中与垂直的元素必有形式.

22、2分 所以x=2b,从而x=4. 4分 (2)证明:取.设满足. 由得,所以、异号. 因为-1是X中唯一的负数,所以、中之一为-1,另一为1,故1X. 7分假设,其中,则.选取,并设满足,即,则、异号,从而、之中恰有一个为-1.若=-1,则2,矛盾;若=-1,则,矛盾.所以x1=1. 10分 (3)解法一猜测,i=1, 2, , n. 12分 记,k=2, 3, , n. 先证明:若具有性质P,则也具有性质P. 任取,、.当、中出现-1时,显然有满足; 当且时,、1. 因为具有性质P,所以有,、,使得,从而和中有一个是-1,不妨设=-1.假设且,则.由,得,与矛盾.所以.从而也具有性质P. 1

23、5分现用数学归纳法证明:,i=1, 2, , n.当n=2时,结论显然成立; 假设n=k时,有性质P,则,i=1, 2, , k; 当n=k+1时,若有性质P,则 也有性质P,所以. 取,并设满足,即.由此可得s与t中有且只有一个为-1. 若,则1,不可能; 所以,又,所以. 综上所述,i=1, 2, , n. 18分 解法二设,则等价于. 记,则数集X具有性质P当且仅当数集B关于原点对称. 14分注意到-1是X中的唯一负数,共有n-1个数,所以也只有n-1个数.由于,已有n-1个数,对以下三角数阵 注意到,所以,从而数列的通项公式为 ,k=1, 2, , n. 18分【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“具有性质”这一概念,考查考生分析探究及推理论证的能力综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 升学试题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁